Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structure–effect relation of C18 long-chain fatty acids in the reduction of body weight in rats

Abstract

Objective:

To investigate the relationship between chemical structure and physiological effect, the efficacy and the molecular mechanisms involved in the reduction of body weight by C18 fatty acids (stearic, elaidic, oleic, linoleic and 2-hydroxyoleic acids (2-OHOA)).

Design:

Ad libitum fed, lean Wistar Kyoto rats treated orally with up to 600 mg kg−1 of the fatty acids or vehicle every 12 h for 7 days. Besides, starved rats and rats pairfed to the 2-OHOA-treated group served as additional controls under restricted feeding conditions.

Measurements:

Body weight, food intake, weight of various fat depots, plasma leptin, hypothalamic neuropeptides, uncoupling proteins (UCP) in white (WAT) and brown adipose tissue (BAT) and phosphorylation level of cyclic AMP (cAMP) response element-binding protein (CREB) in WAT.

Results:

Only treatment with oleic acid and 2-OHOA induced body weight loss (3.3 and 11.4%, respectively) through reduction of adipose fat mass. Food intake in these rats was lower, although hypothalamic neuropeptide and plasma leptin levels indicated a rise in orexigenic status. Rats pairfed to the 2-hydroxyoleic group only lost 6.3% body weight. UCP1 expression and phosphorylation of CREB was drastically increased in WAT, but not BAT of 2-OHOA-treated rats, whereas no UCP1 expression could be detected in WAT of rats treated with oleic acid.

Conclusion:

Both cis-configured monounsaturated C18 fatty acids (oleic acid and 2-OHOA) reduce body weight, but the introduction of a hydroxyl group in position 2 drastically increases loss of adipose tissue mass. The novel molecular mechanism unique to 2-hydroxyoleic, but not oleic acid, implies induction of UCP1 expression in WAT by the cAMP/PKA pathway-dependent transcription factor CREB, most probably as part of a transdifferentiation process accompanied by enhanced energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arora S, Anubhuti . Role of neuropeptides in appetite regulation and obesity—a review. Neuropeptides 2006; 40: 375–401.

    Article  CAS  PubMed  Google Scholar 

  2. Golden PL, Maccagnan TJ, Pardridge WM . Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest 1997; 99: 14–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F et al. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53 (Suppl 1): S130–S135.

    Article  CAS  PubMed  Google Scholar 

  4. Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 2000; 406: 415–418.

    Article  CAS  PubMed  Google Scholar 

  5. Hill JO, Peters JC, Lin D, Yakubu F, Greene H, Swift L . Lipid accumulation and body fat distribution is influenced by type of dietary fat fed to rats. Int J Obes Relat Metab Disord 1993; 17: 223–236.

    CAS  PubMed  Google Scholar 

  6. Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW . Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 1999; 34: 235–241.

    Article  CAS  PubMed  Google Scholar 

  7. Domeneghini C, Di Giancamillo A, Corino C . Conjugated linoleic acids (CLAs) and white adipose tissue: how both in vitro and in vivo studies tell the story of a relationship. Histol Histopathol 2006; 21: 663–672.

    CAS  PubMed  Google Scholar 

  8. Madsen L, Guerre-Millo M, Flindt EN, Berge K, Tronstad KJ, Bergene E et al. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance. J Lipid Res 2002; 43: 742–750.

    CAS  PubMed  Google Scholar 

  9. Gudbrandsen OA, Hultstrom M, Leh S, Monica Bivol L, Vagnes O, Berge RK et al. Prevention of hypertension and organ damage in 2-kidney, 1-clip rats by tetradecylthioacetic acid. Hypertension 2006; 48: 460–466.

    Article  CAS  PubMed  Google Scholar 

  10. Larsen LN, Granlund L, Holmeide AK, Skattebol L, Nebb HI, Bremer J . Sulfur-substituted and alpha-methylated fatty acids as peroxisome proliferator-activated receptor activators. Lipids 2005; 40: 49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Alemany R, Vogler O, Teres S, Egea C, Baamonde C, Barcelo F et al. Antihypertensive action of 2-hydroxyoleic acid in SHRs via modulation of the protein kinase A pathway and Rho kinase. J Lipid Res 2006; 47: 1762–1770.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez J, Vogler O, Casas J, Barcelo F, Alemany R, Prades J et al. Membrane structure modulation, protein kinase C alpha activation, and anticancer activity of minerval. Mol Pharmacol 2005; 67: 531–540.

    Article  CAS  PubMed  Google Scholar 

  13. Gamba CA, Friedman SM, Rodríguez PN, Macria EV, Vacas MI, Lifshitz F . Metabolic status in growing rats fed isocaloric diets with increased carbohydrate-to-fat ratio. Nutrition 2005; 21: 249–254.

    Article  CAS  PubMed  Google Scholar 

  14. Foulon V, Sniekers M, Huysmans E, Asselberghs S, Mahieu V, Mannaerts GP et al. Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: a revised pathway for the alpha-oxidation of straight chain fatty acids. J Biol Chem 2005; 280: 9802–9812.

    Article  CAS  PubMed  Google Scholar 

  15. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L . Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002; 51: 271–275.

    Article  CAS  PubMed  Google Scholar 

  16. Cox JE, Tyler WJ, Randich A, Kelm GR, Bharaj SS, Jandacek RJ et al. Suppression of food intake, body weight, and body fat by jejunal fatty acid infusions. Am J Physiol Regul Integr Comp Physiol 2000; 278: R604–R610.

    Article  CAS  PubMed  Google Scholar 

  17. Cox JE, Kelm GR, Meller ST, Randich A . Suppression of food intake by GI fatty acid infusions: roles of celiac vagal afferents and cholecystokinin. Physiol Behav 2004; 82: 27–33.

    Article  CAS  PubMed  Google Scholar 

  18. Ramirez I, Tordoff MG, Friedman MI . Satiety from fat? Adverse effects of intestinal infusion of sodium oleate. Am J Physiol 1997; 273: R1779–R1785.

    CAS  PubMed  Google Scholar 

  19. Friedman MI, Ramirez I, Tordoff MG . Gastric emptying of ingested fat emulsion in rats: implications for studies of fat-induced satiety. Am J Physiol 1996; 270: R688–R692.

    Article  CAS  PubMed  Google Scholar 

  20. Fukao T, Lopaschuk GD, Mitchell GA . Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 243–251.

    Article  CAS  PubMed  Google Scholar 

  21. Carpenter RG, Grossman SP . Plasma fat metabolites and hunger. Physiol Behav 1983; 30: 57–63.

    Article  CAS  PubMed  Google Scholar 

  22. Young P, Arch JR, Ashwell M . Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 1984; 167: 10–14.

    Article  CAS  PubMed  Google Scholar 

  23. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S . Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279: C670–C681.

    Article  CAS  PubMed  Google Scholar 

  24. Ghorbani M, Himms-Hagen J . Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int J Obes Relat Metab Disord 1997; 21: 465–475.

    Article  CAS  PubMed  Google Scholar 

  25. Kopecky J, Rossmeisl M, Hodny Z, Syrovy I, Horakova M, Kolarova P . Reduction of dietary obesity in aP2-Ucp transgenic mice: mechanism and adipose tissue morphology. Am J Physiol 1996; 270: E776–E786.

    CAS  PubMed  Google Scholar 

  26. Champigny O, Ricquier D . Evidence from in vitro differentiating cells that adrenoceptor agonists can increase uncoupling protein mRNA level in adipocytes of adult humans: an RT-PCR study. J Lipid Res 1996; 37: 1907–1914.

    CAS  PubMed  Google Scholar 

  27. Xue B, Coulter A, Rim JS, Koza RA, Kozak LP . Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Mol Cell Biol 2005; 25: 8311–8322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holm C . Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 2003; 31: 1120–1124.

    Article  CAS  PubMed  Google Scholar 

  29. Inokuma K, Okamatsu-Ogura Y, Omachi A, Matsushita Y, Kimura K, Yamashita H et al. Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation. Am J Physiol Endocrinol Metab 2006; 290: E1014–E1021.

    Article  CAS  PubMed  Google Scholar 

  30. Oana F, Homma T, Takeda H, Matsuzawa A, Akahane S, Isaji M et al. DNA microarray analysis of white adipose tissue from obese (fa/fa) Zucker rats treated with a beta3-adrenoceptor agonist, KTO-7924. Pharmacol Res 2005; 52: 395–400.

    Article  CAS  PubMed  Google Scholar 

  31. Scheja K, Kadenbach B . Nucleotide sequence of cDNA encoding subunit VIII of cytochrome c oxidase from rat heart. Biochim Biophys Acta 1992; 1132: 91–93.

    Article  CAS  PubMed  Google Scholar 

  32. Unami A, Shinohara Y, Kajimoto K, Baba Y . Comparison of gene expression profiles between white and brown adipose tissues of rat by microarray analysis. Biochem Pharmacol 2004; 67: 555–564.

    Article  CAS  PubMed  Google Scholar 

  33. Alemany R, Teres S, Baamonde C, Benet M, Vogler O, Escriba PV . 2-Hydroxyoleic acid: a new hypotensive molecule. Hypertension 2004; 43: 249–254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants PI051340, PI031218 (Ministerio de Sanidad y Consumo, Spain) (to OV and RA) and SAF2004-05249 (Ministerio de Ciencia y Tecnología, Spain) (to PVE). The ‘Conselleria de Sanitat’, the ‘Conselleria d'Innovació y Tecnologia del Govern Balear’ and the ‘Marathon Foundation’ also provided funding for these studies. Regina Alemany and Oliver Vögler hold contracts from the Spanish I3 (‘Programa de Incentivación de la Incorporación e Intensificación de la Actividad Investigadora’) and ‘Ramón y Cajal’ programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Vögler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vögler, O., López-Bellan, A., Alemany, R. et al. Structure–effect relation of C18 long-chain fatty acids in the reduction of body weight in rats. Int J Obes 32, 464–473 (2008). https://doi.org/10.1038/sj.ijo.0803768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803768

Keywords

This article is cited by

Search

Quick links