Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Review

Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia

Abstract

Nitric oxide (NO) exerts contrasting effects on apoptosis, depending on its concentration, flux and cell type. In some situations, NO activates the transduction pathways leading to apoptosis, whereas in other cases NO protects cells against spontaneous or induced apoptosis. The redox state of the cells appears to be a crucial parameter for the determination of the ultimate action of NO on cell multiplication and survival. Apoptosis is mostly associated with the delivery of NO by chemical donors and with myelomonocytic cells, whereas anti-apoptotic effects seem to be related to the endogenous production of NO by NO synthases and is observed more frequently in cells of the B lymphocyte lineage. Pro-apoptotic effects are often observed when NO reacts with superoxide to produce the highly toxic peroxynitrite. Through the induction of damages to DNA, NO stimulates the expression of enzymes and transcription factors involved in DNA repair and modulation of apoptosis, such as the tumor suppressor p53. The latter molecule transactivates the expression of pro-apoptotic genes, such as bax, and that of the cyclin-dependent kinase inhibitor p21, whereas it down-regulates the expression of the anti-apoptotic protein bcl-2. On the other hand, NO inactivates caspases through oxidation and S-nitrosylation of the active cystein, providing an efficient means to block apoptosis. Other protective effects of NO on apoptosis rely on the stimulation of cGMP-dependent protein kinase (PKG), modulation of the members of the bcl-2/bax family that control the mitochondrial pore transition permeability, induction of the heat shock protein HSP 70 and interaction with the ceramide pathway. A defect in the apoptotic process contributes to the accumulation of tumoral cells in leukemia, notably in B-CLL. A better knowledge of the targets of NO would provide efficient means to control cell apoptosis, and hence would possibly lead to the development of new therapeutic approaches for diseases where an alteration of apoptosis is involved. Leukemia (2000) 14, 1685–1694.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L . A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter J Exp Med 1995 182: 1683–1693

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JFR, Wyllie AH, Currie AR . Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics Br J Cancer 1972 26: 239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dimmeler S, Zeiher AM . Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide Nitric Oxide 1997 1: 275–281

    Article  CAS  PubMed  Google Scholar 

  4. Nicotera P, Brune B, Bagetta G . Nitric oxide: inducer or suppressor of apoptosis? Trends Pharmacol Sci 1997 18: 189–190

    Article  CAS  PubMed  Google Scholar 

  5. Brune B, Sandau K, von Knethen A . Apoptotic cell death and nitric oxide: activating and antagonistic transducing pathways Biochemistry (Mosc) 1998 63: 817–825

    CAS  Google Scholar 

  6. Brune B, von Knethen A, Sandau KB . Nitric oxide and its role in apoptosis Eur J Pharmacol 1998 351: 261–272

    Article  CAS  PubMed  Google Scholar 

  7. Sarih M, Souvannavong V, Adam A . Nitric oxide synthase induces macrophage death by apoptosis Biochem Biophys Res Commun 1993 191: 503–508

    Article  CAS  PubMed  Google Scholar 

  8. Albina JE, Cui S, Mateo RB, Reichner JS . Nitric oxide-mediated apoptosis in murine peritoneal macrophages J Immunol 1993 150: 5080–5085

    CAS  PubMed  Google Scholar 

  9. Xie K, Huang S, Dong Z, Fidler IJ . Cytokine-induced apoptosis in transformed murine fibroblasts involves synthesis of endogenous nitric oxide Int J Oncol 1993 3: 1043–1048

    CAS  PubMed  Google Scholar 

  10. Magrinat G, Mason SN, Shami PJ, Weinberg JB . Nitric oxide modulation of human leukemia cell differentiation and gene expression Blood 1992 80: 1880–1884

    CAS  PubMed  Google Scholar 

  11. Shami PJ, Moore JO, Gockerman JP, Hathorn JW, Misukonis MA, Weinberg JB . Nitric oxide modulation of the growth and differentiation of freshly isolated acute non-lymphocytic leukemia cells Leuk Res 1995 19: 527–533

    Article  CAS  PubMed  Google Scholar 

  12. Shami PJ, Weinberg JB . Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells Blood 1996 87: 977–982

    CAS  PubMed  Google Scholar 

  13. Saavedra JE, Shami PJ, Wang LY, Davies KM, Booth MN, Citro ML, Keefer LK . Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: in vitro antileukemic activity J Med Chem 2000 43: 261–269

    Article  CAS  PubMed  Google Scholar 

  14. Ouaaz F, Sola B, Issaly F, Kolb JP, Davi F, Mentz F, Arock M, Paul-Eugene, N, Korner M, Dugas B, Mossalayi MD . Growth arrest and terminal differentiation of leukemic myelomonocytic cells induced through ligation of surface CD23 antigen Blood 1994 84: 3095–3104

    CAS  PubMed  Google Scholar 

  15. Dugas N, Mossalayi MD, Calenda A, Leotard A, Becherel P, Mentz F, Ouaaz F, Arock M, Debre P, Dornand J, Dugas B . Role of nitric oxide in the anti-tumoral effect of retinoic acid and 1,25-dihydroxyvitamin D3 on human promonocytic leukemic cells Blood 1996 88: 3528–3534

    CAS  PubMed  Google Scholar 

  16. James SY, Williams MA, Newland AC, Colston KW . Leukemia cell differentiation: cellular and molecular interactions of retinoids and vitamin D Gen Pharmacol 1999 32: 143–154

    Article  CAS  PubMed  Google Scholar 

  17. Vilpo JA, Vilpo LM, Vuorinen P, Moilanen E, Metsa-Ketela T . Mode of cytostatic action of mesoionic oxatriazole nitric oxide donors in proliferating human hematopoietic cells Anticancer Drug Res 1997 12: 75–89

    CAS  Google Scholar 

  18. Jun CD, Park SJ, Choi BM, Kwak HJ, Park YC, Kim MS, Park RK, Chung HT . Potentiation of the activity of nitric oxide by the protein kinase C activator phorbol ester in human myeloid leukemic HL-60 cells: association with enhanced fragmentation of mature genomic DNA Cell Immunol 1997 176: 41–49

    Article  CAS  PubMed  Google Scholar 

  19. Kuo ML, Chau YP, Wang JH, Shiah SG . Inhibitors of poly(ADP-ribose) polymerase block nitric oxide-induced apoptosis but not differentiation in human leukemia HL-60 cells Biochem Biophys Res Commun 1996 219: 502–508

    Article  CAS  PubMed  Google Scholar 

  20. Jun CD, Pae HO, Yoo JC, Kwak HJ, Park RK, Chung HT . Cyclic adenosine monophosphate inhibits nitric oxide-induced apoptosis in human leukemic HL-60 cells Cell Immunol 1998 183: 13–21

    Article  CAS  PubMed  Google Scholar 

  21. Shami PJ, Sauls DL, Weinberg JB . Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide Leukemia 1998 12: 1461–1466

    Article  CAS  PubMed  Google Scholar 

  22. Okada S, Yabuki M, Kanno T, Hamazaki K, Yoshioka T, Yasuda T, Horton AA, Utsumi K . Geranylgeranylacetone induces apoptosis in HL-60 cells Cell Struct Funct 1999 24: 161–168

    Article  CAS  PubMed  Google Scholar 

  23. Yabuki M, Kariya S, Inai Y, Hamazaki K, Yoshioka T, Yasuda T, Horton AA, Utsumi K . Molecular mechanisms of apoptosis in HL-60 cells induced by a nitric oxide-releasing compound Free Radic Res 1997 27: 325–335

    Article  CAS  PubMed  Google Scholar 

  24. Yabuki M, Kariya S, Ishisaka R, Yasuda T, Yoshioka T, Horton AA, Utsumi K . Resistance to nitric oxide-mediated apoptosis in HL-60 variant cells is associated with increased activities of Cu,Zn-superoxide dismutase and catalase Free Radic Biol Med 1999 26: 325–332

    Article  CAS  PubMed  Google Scholar 

  25. Takeda Y, Tashima M, Takahashi A, Uchiyama T, Okazaki T . Ceramide generation in nitric oxide-induced apoptosis. Activation of magnesium-dependent neutral sphingomyelinase via caspase-3 J Biol Chem 1999 274: 10654–10660

    Article  CAS  PubMed  Google Scholar 

  26. Brockhaus F, Brune B . U937 apoptotic cell death by nitric oxide: Bcl-2 downregulation and caspase activation Exp Cell Res 1998 238: 33–41

    Article  CAS  PubMed  Google Scholar 

  27. Messmer UK, Brune B . Nitric oxide in apoptotic versus necrotic RAW 264.7 macrophage cell death: the role of NO-donor exposure, NAD content, and p53 accumulation Arch Biochem Biophys 1996 327: 1–10

    Article  CAS  PubMed  Google Scholar 

  28. Messmer UK, Reimer DM, Brune B . Protease activation during nitric oxide-induced apoptosis: comparison between poly(ADP-ribose) polymerase and U1–70kDa cleavage Eur J Pharmacol 1998 349: 333–343

    Article  CAS  PubMed  Google Scholar 

  29. Lin KT, Xue JY, Nomen M, Spur B, Wong PY . Peroxynitrite-induced apoptosis in HL-60 cells J Biol Chem 1995 270: 16487–16490

    Article  CAS  PubMed  Google Scholar 

  30. Lin KT, Xue JY, Lin MC, Spokas EG, Sun FF, Wong PY . Peroxynitrite induces apoptosis of HL-60 cells by activation of a caspase-3 family protease Am J Physiol 1998 274: C855–860

    Article  CAS  PubMed  Google Scholar 

  31. Muhl H, Nold M, Chang JH, Frank S, Eberhardt W, Pfeilschifter J . Expression and release of chemokines associated with apoptotic cell death in human promonocytic U937 cells and peripheral blood mononuclear cells Eur J Immunol 1999 29: 3225–3235

    Article  CAS  PubMed  Google Scholar 

  32. Chlichlia K, Peter ME, Rocha M, Scaffidi C, Bucur M, Krammer PH, Schirrmacher V, Umansky V . Caspase activation is required for nitric oxide-mediated, CD95(APO-1/Fas)-dependent and independent apoptosis in human neoplastic lymphoid cells Blood 1998 91: 4311–4320

    CAS  PubMed  Google Scholar 

  33. Ushmorov A, Ratter F, Lehmann V, Droge W, Schirrmacher V, Umansky V . Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release Blood 1999 93: 2342–2352

    CAS  PubMed  Google Scholar 

  34. Geng YJ, Hellstrand K, Wennmalm A, Hansson GK . Apoptotic death of human leukemic cells induced by vascular cells expressing nitric oxide synthase in response to gamma-interferon and tumor necrosis factor-alpha Cancer Res 1996 56: 866–874

    CAS  PubMed  Google Scholar 

  35. Al-alami O, Sammons J, Martin JH, Hassan HT . Divergent effect of taxol on proliferation, apoptosis and nitric oxide production in MHH225 CD34 positive and U937 CD34 negative human leukaemia cells Leuk Res 1998 22: 939–945

    Article  CAS  PubMed  Google Scholar 

  36. Srivastava RK, Sollott SJ, Khan L, Hansford R, Lakatta EG, Longo DL . Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminal kinase activity, and apoptosis Mol Cell Biol 1999 19: 5659–5674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fabisiak JP, Tyurin VA, Tyurina YY, Sedlov A, Lazo JS, Kagan VE . Nitric oxide dissociates lipid oxidation from apoptosis and phosphatidylserine externalization during oxidative stress Biochemistry 2000 39: 127–138

    Article  CAS  PubMed  Google Scholar 

  38. Zamzami N, Marchetti P, Castedo, M, Hirsch T, Susis SA, Masse B, Kroemer G . Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis FEBS Lett 1996 384: 53–57

    Article  CAS  PubMed  Google Scholar 

  39. Kroemer G, Zamzami N, Susin SA . Mitochondrial control of apoptosis Immunol Today 1997 18: 44–46

    Article  CAS  PubMed  Google Scholar 

  40. Hortelano S, Dallaporta B, Zamzami N, Hirsch T, Susin SA, Marzo I, Bosca L, Kroemer G . Nitric oxide induces apoptosis via triggering mitochondrial permeability transition FEBS Lett 1997 410: 373–377

    Article  CAS  PubMed  Google Scholar 

  41. Hortelano S, Alvarez AM, Bosca L . Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages FASEB J 1999 13: 2311–2317

    Article  CAS  PubMed  Google Scholar 

  42. Ghafourifar P, Richter C . Nitric oxide synthase activity in mitochondria FEBS Lett 1997 418: 291–296

    Article  CAS  PubMed  Google Scholar 

  43. Giulivi C, Poderoso JJ, Boveris A . Production of nitric oxide by mitochondria J Biol Chem 1998 273: 11038–11043

    Article  CAS  PubMed  Google Scholar 

  44. Ghafourifar P, Richter C . Mitochondrial nitric oxide synthase regulates mitochondrial matrix pH Biol Chem 1999 380: 1025–1028

    Article  CAS  PubMed  Google Scholar 

  45. Ghafourifar P, Schenk U, Klein SD, Richter C . Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation J Biol Chem 1999 274: 31185–31188

    Article  CAS  PubMed  Google Scholar 

  46. Kozlov AV, Staniek K, Nohl H . Nitrite reductase activity is a novel function of mammalian mitochondria FEBS Lett 1999 454: 127–130

    Article  CAS  PubMed  Google Scholar 

  47. Lepoivre M, Flaman JM, Bobe P, Lemaire G, Henry Y . Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages J Biol Chem 1994 269: 21891–21897

    CAS  PubMed  Google Scholar 

  48. Zhang J, Dawson VL, Dawson TM, Snyder SH . Nitric oxide activation of poly(ADP-ribose) synthase in neurotoxicity Science 1994 263: 687–689

    Article  CAS  PubMed  Google Scholar 

  49. Eliasson MJL, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang Z-Q, Dawson TM, Snyder SH, Dawson VL . Poly (ADP-ribose) polymerase gene disruption renders mice resistant to cerbral ischemia Nat Genet 1997 3: 1089–1095

    Article  CAS  Google Scholar 

  50. Messmer UK, Ankarcrona M, Nicotera P, Brune B . p53 expression in nitric-oxide induced apoptosis FEBS Lett 1994 355: 23–26

    Article  CAS  PubMed  Google Scholar 

  51. Levine AJ . P53, the cellular gatekeeper for growth and division Cell 1997 88: 323–331

    Article  CAS  PubMed  Google Scholar 

  52. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B . A model for p53 induced apoptosis Nature 1997 389: 300–305

    Article  CAS  PubMed  Google Scholar 

  53. Caelles C, Helmberg A, Karin M . p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes Nature 1994 370: 220–223

    Article  CAS  PubMed  Google Scholar 

  54. Ambs S, Ogunfusika MO, Merriam WG, Bennett WP, Billiar TR, Harris CC . Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice Proc Natl Acad Sci USA 1998 95: 8823–8828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blagosklonny MV, An WG, Romanova, LY, Trepel J, Fojo T, Neckers L . p53 inhibits hypoxia-inducible factor-stimulated transcription J Biol Chem 1998 273: 11995–11998

    Article  CAS  PubMed  Google Scholar 

  56. Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain SP, Tzeng EE, Geller DA, Billiar TR, Harris CC . p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells Nature Med 1998 4: 1371–1376

    Article  CAS  PubMed  Google Scholar 

  57. Callsen D, Brune B . Role of mitogen-activated protein kinases in S-nitrosoglutathione-induced macrophage apoptosis Biochemistry 1999 38: 2279–2286

    Article  CAS  PubMed  Google Scholar 

  58. Maki CG, Huibregtse JM, Howley PM . In vivo ubiquitination and proteasome-mediated degradation of p53 Cancer Res 1996 56: 2649–2654

    CAS  PubMed  Google Scholar 

  59. Glockzin S, von Knethen A, Scheffner M, Brüne B . Activation of the cell death program by nitric oxide involves inhibition of the proteasome J Biol Chem 1999 274: 19581–19586

    Article  CAS  PubMed  Google Scholar 

  60. Chang YC, Lee YS, Tejima T, Tanaka K, Omura S, Heintz NH, Mitsui Y, Magae J . mdm2 and bax, downstream mediators of the p53 response, are degraded by the ubiquitin-proteasome pathway Cell Growth Differ 1998 9: 79–84

    CAS  PubMed  Google Scholar 

  61. Blagosklonny MV, Wu GS, Omura S, el-Deiry WS . Proteasome-dependent regulation of p21WAF1/CIP1 expression Biochem Biophys Res Commun 1996 227: 564–569

    Article  CAS  PubMed  Google Scholar 

  62. Brüne B, von Knethen A, Sandau KB . Nitric oxide (NO): an effector of apoptosis Cell Death Differ 1999 6: 969–975

    Article  CAS  PubMed  Google Scholar 

  63. Messmer UK, Reimer DM, Reed JC, Brune B . Nitric oxide induced poly(ADP-ribose) polymerase cleavage in RAW 264.7 macrophage apoptosis is blocked by Bcl-2 FEBS Lett 1996 384: 162–166

    Article  CAS  PubMed  Google Scholar 

  64. Liu L, Stamler JS . NO: an inhibitor of cell death Cell Death Differ 1999 6: 937–942

    Article  CAS  PubMed  Google Scholar 

  65. Genaro AM, Hortelano S, Alvarez A, Martinez C, Bosca L . Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels J Clin Invest 1995 95: 1884–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hortelano S, Bosca L . 6-Mercaptopurine decreases the Bcl-2/Bax ratio and induces apoptosis in activated splenic B lymphocytes Mol Pharmacol 1997 51: 414–421

    CAS  PubMed  Google Scholar 

  67. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS . Nitric oxide produced by human lymphocytes inhibit apoptosis and Epstein–Barr virus reactivation Cell 1994 79: 1137–1146

    Article  CAS  PubMed  Google Scholar 

  68. Dugas B, Mossalayi DM, Damais C, Kolb JP . Nitric oxide production by human monocytes. Evidence for a role of CD23 Immunol Today 1995 16: 574–580

    Article  CAS  PubMed  Google Scholar 

  69. Zhao H, Dugas N, Mathiot C, Delmer A, Dugas B, Sigaux F, Kolb JP . B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity Blood 1998 92: 1031–1043

    CAS  PubMed  Google Scholar 

  70. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P . Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells Blood 1998 91: 2387–2396

    CAS  PubMed  Google Scholar 

  71. Younes A, Snell V, Consoli U, Clodi K, Zhao S, Palmer JL, Thomas EK, Armitage RJ, Andreeff M . Elevated levels of biologically active soluble CD40 ligand in the serum of patients with chronic lymphocytic leukaemia Br J Haematol 1998 100: 135–141

    Article  CAS  PubMed  Google Scholar 

  72. Levesque MC, Adams DJ, Misukonis MA, Flowers J, Silber R, Weinberg JB . Detection of inducible nitric oxide synthase (NOS2) mRNA, antigen and enzyme activity in leukemia cells from patients with CLL. In: Moncada S, Gustafson LE, Wikland NP, Higgs EA (eds) The Biology of Nitric Oxide, Part 7 Portland Press: London 2000 p 210

    Google Scholar 

  73. Eigler A, Waller-Fontaine K, Moeller J, Hartmann G, Hacker UT, Endres S . The hairy cell leukemia cell line Eskol spontaneously synthesizes tumor necrosis factor-alpha and nitric oxide Leuk Res 1998 22: 501–507

    Article  CAS  PubMed  Google Scholar 

  74. Roman V, Zhao H, Fourneau JM, Marconi A, Dugas N, Dugas B, Sigaux F, Kolb JP . Expression of a functional inducible nitric oxide synthase in hairy cell leukemia and ESKOL cell line Leukemia 2000 14: 696–705

    Article  CAS  PubMed  Google Scholar 

  75. Kolb JP, Roman V, Mentz F, Zhao H, Rouillard D, Dugas N, Dugas B, Sigaux F . Contribution of nitric oxide to the apoptotic process in human B cell chronic lymphocytic leukaemia Leuk Lymphoma 2000 (in press)

  76. Sonoki T, Matsuzaki H, Nagasaki A, Hata H, Yoshida M, Matsuoka M, Kuribayashi N, Kimura T, Harada N, Takatsuki K, Mitsuya H, Mori M . Detection of inducible nitric oxide synthase (iNOS) mRNA by RT-PCR in ATL patients and HTLV-I infected cell lines: clinical features and apoptosis by NOS inhibitor Leukemia 1999 13: 713–718

    Article  CAS  PubMed  Google Scholar 

  77. Mori N, Nunokawa Y, Yamada Y, Ikeda S, Tomonaga M, Yamamoto N . Expression of human inducible nitric oxide synthase gene in T-cell lines infected with human T-cell leukemia virus type-I and primary adult T-cell leukemia cells Blood 1999 94: 2862–2870

    CAS  PubMed  Google Scholar 

  78. Goto H, Nakamura T, Shirabe S, Ueki Y, Nishiura Y, Furuya T, Tsujino A, Nakane S, Eguchi K, Nagataki S . Up-regulation of iNOS mRNA expression and increased production of NO in human monoblast cell line, U937 transfected by HTLV-I tax gene Immunobiology 1997 197: 513–521

    Article  CAS  PubMed  Google Scholar 

  79. Li J, Billiar TR, Talanian RV, Kim YM . Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation Biochem Biophys Res Commun 1997 240: 419–424

    Article  CAS  PubMed  Google Scholar 

  80. Haendeler J, Weiland U, Zeiher AM, Dimmeler S . Effects of redox-related congeners of NO on apoptosis and caspase-3 activity Nitric Oxide 1997 1: 282–293

    Article  CAS  PubMed  Google Scholar 

  81. Mohr S, Zech B, Lapetina EG, Brune B . Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide Biochem Biophys Res Commun 1997 238: 387–391

    Article  CAS  PubMed  Google Scholar 

  82. Tzeng E, Billiar TR, Williams DL, Li J, Lizonova A, Kovesdi I, Kim YM . Adenovirus-mediated inducible nitric oxide synthase gene transfer inhibits hepatocyte apoptosis Surgery 1998 124: 278–283

    Article  CAS  PubMed  Google Scholar 

  83. Kim YM, Talanian RV, Billiar TR . Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms J Biol Chem 1997 272: 31138–31148

    Article  CAS  PubMed  Google Scholar 

  84. Li J, Bombeck CA, Yang S, Kim YM, Billiar TR . Nitric oxide suppresses apoptosis via interrupting caspase activation and mitochondrial dysfunction in cultures hepatocytes J Biol Chem 1999 274: 17325–17333

    Article  CAS  PubMed  Google Scholar 

  85. Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, M lsch A, Dimmeler S . Nitric oxide inhibits caspase-3 by S-Nitrosation in vivo J Biol Chem 1999 274: 6823–6826

    Article  CAS  PubMed  Google Scholar 

  86. Zech B, Wilm M, van Eldik R, Brüne B . Mass spectrometry analysis of nitric oxide-modified caspase-3 J Biol Chem 1999 274: 20931–20936

    Article  CAS  PubMed  Google Scholar 

  87. Dimmeler S, Haendeler J, Nehls M, Zeiher AM . Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases J Exp Med 1997 185: 601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mannick JB, Miao XQ, Stamler JS . Nitric oxide inhibits Fas-induced apoptosis J Biol Chem 1997 272: 24125–24128

    Article  CAS  PubMed  Google Scholar 

  89. Dimmeler S, Haendeler J, Sause A, Zeiher AM . Nitric oxide inhibits APO-1/Fas-mediated cell death Cell Growth Differ 1998 9: 415–422

    CAS  PubMed  Google Scholar 

  90. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS . Fas-induced caspase denitrosylation Science 1999 284: 651–654

    Article  CAS  PubMed  Google Scholar 

  91. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors Cell 1998 94: 481–490

    Article  CAS  PubMed  Google Scholar 

  92. Kroemer G . The proto-oncogene Bcl-2 and its role in regulating apoptosis Nature Med 1997 3: 614–615

    Article  CAS  PubMed  Google Scholar 

  93. Suschek CV, Krischel V, Bruch-Gerharz D, Berendji D, Krutmann J, Kroncke KD, Kolb-Bachofen V . Nitric oxide fully protects against UVA-induced apoptosis in tight correlation with Bcl-2 up-regulation J Biol Chem 1999 274: 6130–6137

    Article  CAS  PubMed  Google Scholar 

  94. Kim YM, de Vera ME, Watkins SC, Billiar TR . Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression J Biol Chem 1997 272: 1402–1411

    Article  CAS  PubMed  Google Scholar 

  95. Sciorati C, Rovere P, Ferrarini M, Heltai S, Manfredi AA, Clementi E . Autocrine nitric oxide modulates CD95-induced apoptosis in gammadelta T lymphocytes J Biol Chem 1997 272: 23211–23215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM and by grants from ARC (No. 9481) and Fondation contre la Leucémie.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, JP. Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia 14, 1685–1694 (2000). https://doi.org/10.1038/sj.leu.2401896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401896

Keywords

This article is cited by

Search

Quick links