Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Gene transfer of CD154 and IL12 cDNA induces an anti-leukemic immunity in a murine model of acute leukemia

Abstract

IL12 is an essential cytokine for the generation of T helper 1 response, natural killer (NK) cells and cytotoxic T lymphocyte (CTL) stimulation. CD154 triggers CD40 on antigen-presenting cells, thus inducing antigen presentation to the immune system and production of IL12. As IL12 and CD154 share several pathways mediating immune response, we investigated in an aggressive murine model of acute leukemia the relative antileukemic efficiency of IL12, CD154 and IL12 + CD154 gene transfer. Live leukemic cells transduced by IL12, CD154, and IL12 + CD154 showed reduced leukemogenicity but CD154 protective effect was reduced when 106 leukemic cells were injected. Vaccines with lethally irradiated IL12-transduced cells were able to cure mice previously injected with 104 leukemic cells and adoptive transfer of IL12-induced antileukemic immunity protected recipient mice. NK cytotoxicity was enhanced in mice vaccinated with leukemic cells transduced by IL12, CD154, and CD154 + IL12. IL12 transduced cells induced IFN-γ mRNA in CD4+ and CD8+ T cells isolated from the spleen of vaccinated animals, however, in vivo depletion experiments showed that IL12 vaccine effect was CD4+ but not CD8+ T cell dependent. We conclude that IL12 gene is a more potent candidate than CD154 for gene therapy of acute leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Matulonis UA, Dosiou C, Lamont C, Freeman GJ, Mauch P, Nadler LM, Griffin JD . Role of B7–1 in mediating an immune response to myeloid leukemia cells Blood 1995 85: 2507–2515

    CAS  PubMed  Google Scholar 

  2. Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW, Strom TB, Burakoff SJ, Croop JM, Arceci RJ . Irradiated B7–1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML Blood 1996 87: 2938–2946

    CAS  PubMed  Google Scholar 

  3. Matulonis U, Dosiou C, Freeman G, Lamont C, Mauch P, Nadler LM, Griffin JD . B7–1 is superior to B7–2 costimulation in the induction and maintenance of T cell-mediated antileukemia immunity. Further evidence that B7–1 and B7–2 are functionally distinct J Immunol 1996 156: 1126–1131

    CAS  PubMed  Google Scholar 

  4. Boyer MW, Vallera DA, Taylor PA, Gray GS, Katsanis E, Gorden K, Orchard PJ, Blazar BR . The role of B7 costimulation by murine acute myeloid leukemia in the generation and function of a CD8+ T-cell line with potent in vivo graft-versus-leukemia properties Blood 1997 89: 3477–3485

    CAS  PubMed  Google Scholar 

  5. Dilloo D, Brown M, Roskrow M, Zhong W, Holladay M, Holden W, Brenner M . CD40 ligand induces an antileukemia immune response in vivo Blood 1997 90: 1927–1933

    CAS  PubMed  Google Scholar 

  6. Dunussi-Joannopoulos K, Krenger W, Weinstein HJ, Ferrara JL, Croop JM . CD8+ T cells activated during the course of murine acute myelogenous leukemia elicit therapeutic responses to late B7 vaccines after cytoreductive treatment Blood 1997 89: 2915–2924

    CAS  PubMed  Google Scholar 

  7. Dunussi-Joannopoulos K, Weinstein HJ, Arceci RJ, Croop JM . Gene therapy with B7.1 and GM-CSF vaccines in a murine AML model J Pediatr Hematol Oncol 1997 19: 536–540

    Article  CAS  PubMed  Google Scholar 

  8. Hirst WJ, Buggins A, Darling D, Gaken J, Farzaneh F, Mufti GJ . Enhanced immune costimulatory activity of primary acute myeloid leukaemia blasts after retrovirus-mediated gene transfer of B7.1 Gene Ther 1997 4: 691–699

    Article  CAS  PubMed  Google Scholar 

  9. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM . Gene immunotherapy in murine acute myeloid leukemia: granulocyte–macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines Blood 1998 91: 222–230

    CAS  PubMed  Google Scholar 

  10. Mutis T, Schrama E, Melief CJ, Goulmy E . CD80-transfected acute myeloid leukemia cells induce primary allogeneic T-cell responses directed at patient specific minor histocompatibility antigens and leukemia-associated antigens Blood 1998 92: 1677–1684

    CAS  PubMed  Google Scholar 

  11. Stripecke R, Skelton DC, Gruber T, Afar D, Pattengale PK, Witte ON, Kohn DB . Immune response to Philadelphia chromosome-positive acute lymphoblastic leukemia induced by expression of CD80, interleukin 2, and granulocyte–macrophage colony-stimulating factor Hum Gene Ther 1998 9: 2049–2062

    Article  CAS  PubMed  Google Scholar 

  12. Stripecke R, Skelton DC, Pattengale PK, Shimada H, Kohn DB . Combination of CD80 and granulocyte-macrophage colony-stimulating factor coexpression by a leukemia cell vaccine: preclinical studies in a murine model recapitulating Philadelphia chromosome-positive acute lymphoblastic leukemia Hum Gene Ther 1999 10: 2109–2122

    Article  CAS  PubMed  Google Scholar 

  13. Dunussi-Joannopoulos K, Runyon K, Erickson J, Schaub RG, Hawley RG, Leonard JP . Vaccines with interleukin-12-transduced acute myeloid leukemia cells elicit very potent therapeutic and long-lasting protective immunity Blood 1999 94: 4263–4273

    CAS  PubMed  Google Scholar 

  14. Trinchieri G . Interleukin-12: a cytokine at the interface of inflammation and immunity Adv Immunol 1998 70: 83–243

    Article  CAS  PubMed  Google Scholar 

  15. Tahara H, Zitvogel L, Storkus WJ, Zeh HJ 3rd, McKinney TG, Schreiber RD, Gubler U, Robbins PD, Lotze MT . Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector J Immunol 1995 154: 6466–6474

    CAS  PubMed  Google Scholar 

  16. Zitvogel L, Robbins PD, Storkus WJ, Clarke MR, Maeurer MJ, Campbell RL, Davis CG, Tahara H, Schreiber RD, Lotze MT . Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors Eur J Immunol 1996 26: 1335–1341

    Article  CAS  PubMed  Google Scholar 

  17. Trinchieri G . Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes Blood 1994 84: 4008–4027

    CAS  PubMed  Google Scholar 

  18. Grewal IS, Flavell RA . CD40 and CD154 in cell-mediated immunity Annu Rev Immunol 1998 16: 111–135

    Article  CAS  PubMed  Google Scholar 

  19. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ . CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia Blood 2000 96: 2917–2924

    CAS  PubMed  Google Scholar 

  20. Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L . Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo Nat Med 1999 5: 405–411

    Article  CAS  PubMed  Google Scholar 

  21. Hamdane M, David-Cordonnier MH, D'Halluin JC . Activation of p65 NF-kappaB protein by p210BCR-ABL in a myeloid cell line (P210BCR-ABL activates p65 NF-kappaB) Oncogene 1997 15: 2267–2275

    Article  CAS  PubMed  Google Scholar 

  22. Vereecque R, Buffenoir G, Gonzalez R, Preudhomme C, Fenaux P, Quesnel B . A new murine aggressive leukemic model Leuk Res 1999 23: 415–416

    Article  CAS  PubMed  Google Scholar 

  23. Vereecque R, Buffenoir G, Preudhomme C, Hetuin D, Bauters F, Fenaux P, Quesnel B . Gene transfer of GM-CSF, CD80 and CD154 cDNA enhances survival in a murine model of acute leukemia with persistence of a minimal residual disease Gene Ther 2000 7: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  24. Desreumaux P, Ernst O, Geboes K, Gambiez L, Berrebi D, Muller-Alouf H, Hafraoui S, Emilie D, Ectors N, Peuchmaur M, Cortot A, Capron M, Auwerx J, Colombel JF . Inflammatory alterations in mesenteric adipose tissue in Crohn's disease Gastroenterology 1999 117: 73–81

    Article  CAS  PubMed  Google Scholar 

  25. Wu C, Wang X, Gadina M, O'Shea JJ, Presky DH, Magram J . IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites J Immunol 2000 165: 6221–6228

    Article  CAS  PubMed  Google Scholar 

  26. Trinchieri G . Immunobiology of interleukin-12 Immunol Res 1998 17: 269–278

    Article  CAS  PubMed  Google Scholar 

  27. Gol bJ, Zagozdzon R, Kaminski R, Kozar K, Gryska K, Izycki D, Mackiewicz A, Stoklosa T, Giermasz A, Lasek W, Jakobisiak M . Potentiated antitumor effectiveness of combined chemo-immunotherapy with interleukin-12 and 5-fluorouracil of L1210 leukemia in vivo Leukemia 2001 15: 613–620

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ligue Contre le Cancer (Comite du Nord and Comite du Pas de Calais), the Association de Recherche sur le Cancer, the Association Recherche Transfusion, the Fondation contre la Leucémie, and the GEFLUC.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saudemont, A., Buffenoir, G., Denys, A. et al. Gene transfer of CD154 and IL12 cDNA induces an anti-leukemic immunity in a murine model of acute leukemia. Leukemia 16, 1637–1644 (2002). https://doi.org/10.1038/sj.leu.2402590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402590

Keywords

This article is cited by

Search

Quick links