Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice

Abstract

Hematopoietic stem cells are identified based on their functional ability to migrate via the blood circulation of transplanted recipients, to home to the host bone marrow and to durably repopulate this organ with high levels of maturing myeloid and lymphoid cells. While a small pool of undifferentiated stem cells with the potential to repeat the entire process in serially transplanted recipients is maintained within the bone marrow, maturing cells are continuously released into the circulation. In recent years pre-clinical, functional in vivo models for human stem cells have been developed, using immune-deficient mice or pre-immune, fetal sheep as recipients. The mechanism of human stem cell migration, homing and repopulation in transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice as well as the accessory mediators that facilitate these processes, will be reviewed. In particular, the essential roles of the chemokine SDF-1 and its receptor CXCR4 which mediate and regulate stem cell homing and repopulation will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Takeuchi M, Sekiguchi T, Hara T, Kinoshita T, Miyajima A . Cultivation of aorta–gonad–mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow Blood 2002 99: 1190–1196

    CAS  PubMed  Google Scholar 

  2. Yoder MC, Hiatt K, Mukherjee P . In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus Proc Natl Acad Sci USA 1997 94: 6776–6780

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Moore MA, Metcalf D . Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo Br J Haematol 1970 18: 279–296

    CAS  PubMed  Google Scholar 

  4. Cumano A, Dieterlen-Lievre F, Godin I . Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura Cell 1996 86: 907–916

    CAS  PubMed  Google Scholar 

  5. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E . Development of hematopoietic stem cell activity in the mouse embryo Immunity 1994 1: 291–301

    CAS  PubMed  Google Scholar 

  6. Medvinsky A, Dzierzak E . Definitive hematopoiesis is autonomously initiated by the AGM region Cell 1996 86: 897–906

    CAS  PubMed  Google Scholar 

  7. Weissman IL . Stem cells: units of development, units of regeneration, and units in evolution Cell 2000 100: 157–168

    CAS  PubMed  Google Scholar 

  8. To LB, Haylock DN, Simmons PJ, Juttner CA . The biology and clinical uses of blood stem cells Blood 1997 89: 2233–2258

    CAS  PubMed  Google Scholar 

  9. Link DC . Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor-cell mobilization Semin Hematol 2000 37: 25–32

    CAS  PubMed  Google Scholar 

  10. Maekawa T, Ishii T . Chemokine/receptor dynamics in the regulation of hematopoiesis Intern Med 2000 39: 90–100

    CAS  PubMed  Google Scholar 

  11. Nagasawa T, Tachibana K, Kishimoto T . A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection Semin Immunol 1998 10: 179–185

    CAS  PubMed  Google Scholar 

  12. Ponomaryov T, Peled A, Petit I, Taichman R, Habler L, Sandbank J, Arenzana-Seisdedos F, Magerus A, Caruz A, Fujii N, Nagler A, Lahav M, Szyper-Kravitz M, Zipori D, Lapidot T . Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function JCI 2000 106: 1331–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagasawa T, Kikutani H, Kishimoto T . Molecular cloning and structure of a pre-B-cell growth-stimulating factor Proc Natl Acad Sci USA 1994 91: 2305–2309

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J, Shindo M, Higashino F, Tanaka J, Asaka M, Hosokawa M . Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow Br J Haematol 1999 106: 905–911

    CAS  PubMed  Google Scholar 

  15. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T, Uchino H, Mori KJ . Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow Exp Hematol 1989 17: 145–153

    CAS  PubMed  Google Scholar 

  16. Issaad C, Croisille L, Katz A, Vainchenker W, Coulombel L . A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38− progenitor cells in long-term cultures and semisolid assays Blood 1993 81: 2916–2924

    CAS  PubMed  Google Scholar 

  17. Zipori D, Lee F . Introduction of interleukin-3 gene into stromal cells from the bone marrow alters hemopoietic differentiation but does not modify stem cell renewal Blood 1988 71: 586–596

    CAS  PubMed  Google Scholar 

  18. Peled A, Hardan I, Magid M, Zipori D, Lapidot T . Enhanced engraftment by human SRC and CML cells and increased formation of primitive CFU-GEMM colonies in response to short interactions between CD34+ cells and BM stromal cells Blood 1999 94: 557a (Abstr.)

    Google Scholar 

  19. Bleul CC, Schultze JL, Springer TA . B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement J Exp Med 1998 187: 753–762

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood J Exp Med 1997 185: 111–120

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Loetscher M, Geiser T, O'Reilly T, Zwahlen R, Baggiolini M, Moser B . Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes J Biol Chem 1994 269: 232–237

    CAS  PubMed  Google Scholar 

  22. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T . Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 Nature 1996 382: 635–638

    CAS  PubMed  Google Scholar 

  23. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA . Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice Proc Natl Acad Sci USA 1998 95: 9448–9453

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development Nature 1998 393: 595–599

    CAS  PubMed  Google Scholar 

  25. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T . The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract Nature 1998 393: 591–594

    CAS  PubMed  Google Scholar 

  26. Kawabata K, Ujikawa M, Egawa T, Kawamoto H, Tachibana K, Iizasa H, Katsura Y, Kishimoto T, Nagasawa T . A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution Proc Natl Acad Sci USA 1999 96: 5663–5667

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment Immunity 1999 10: 463–471

    CAS  PubMed  Google Scholar 

  28. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT . Hematopoietic stem cell quiescence maintained by p21cip1/waf1 Science 2000 287: 1804–1808

    CAS  PubMed  Google Scholar 

  29. Kollet O, Grabovsky V, Franitza S, Lider O, Alon R, Lapidot T . SDF-1 induces survival, adhesion, and migration in 3D-ECM like gels of murine CXCR4 null fetal liver cells Blood 2000 96: 65a

    Google Scholar 

  30. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA, Ratajczak MZ . Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment Blood 2001 98: 3143–3149

    CAS  PubMed  Google Scholar 

  31. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ . Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells Exp Hematol 2002 30: 450–459

    CAS  PubMed  Google Scholar 

  32. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, Honjo T . Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene Genomics 1995 28: 495–500

    CAS  PubMed  Google Scholar 

  33. Sawada S, Gowrishankar K, Kitamura R, Suzuki M, Suzuki G, Tahara S, Koito A . Disturbed CD4+ T cell homeostasis and in vitro HIV-1 susceptibility in transgenic mice expressing T cell line-tropic HIV-1 receptors J Exp Med 1998 187: 1439–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Onai N, Zhang Y, Yoneyama H, Kitamura T, Ishikawa S, Matsushima K . Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine Blood 2000 96: 2074–2080

    CAS  PubMed  Google Scholar 

  35. Lee Y, Gotoh A, Kwon HJ, You M, Kohli L, Mantel C, Cooper S, Hangoc G, Miyazawa K, Ohyashiki K, Broxmeyer HE . Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines Blood 2002 99: 4307–4317

    CAS  PubMed  Google Scholar 

  36. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines J Exp Med 2002 195: 1145–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency Nature 1988 335: 256–259

    Article  CAS  PubMed  Google Scholar 

  38. McCune JM, Namikawa R, Kaneshima R, Schultz LD, Leiberman K, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function Science 1988 241: 1632–1639

    CAS  PubMed  Google Scholar 

  39. Heike Y, Ohira T, Takahashi M, Saijo N . Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells Blood 1995 86: 524–530

    CAS  PubMed  Google Scholar 

  40. Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells Science 1988 242: 1706–1709

    CAS  PubMed  Google Scholar 

  41. Bosma MJ, Carroll AM . The SCID mouse mutant: definition, characterization, and potential uses Annu Rev Immunol 1991 9: 323–350

    CAS  PubMed  Google Scholar 

  42. Zanjani ED, Silva MR, Flake AW . Retention and multilineage expression of human hematopoietic stem cells in human-sheep chimeras Blood Cells 1994 20: 331–338

    CAS  PubMed  Google Scholar 

  43. Kamel-Reid S, Letarte M, Doedens M, Greaves A, Murdoch B, Grunberger T, Lapidot T, Thorner P, Freedman MH, Phillips RA . Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and dissaminates rapidly in scid mice Blood 1991 78: 2973–2981

    CAS  PubMed  Google Scholar 

  44. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice Science 1992 255: 1137–1141

    CAS  PubMed  Google Scholar 

  45. Vormoor J, Lapidot T, Pflumio F, Risdon G, Broxmeyer H, Dick JE . Immature human cord blood cells give rise to multi lineage progenitors in SCID mice Blood 1994 83: 2489–2497

    CAS  PubMed  Google Scholar 

  46. Makalowski W, Zhang J, Boguski MS . Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences Genome Res 1996 6: 846–857

    CAS  PubMed  Google Scholar 

  47. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caseres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE . A cell initiating human acute myeloid leukemia after transplantation into SCID mice Nature 1994 367: 645–648

    CAS  PubMed  Google Scholar 

  48. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737

    CAS  PubMed  Google Scholar 

  49. Terpstra W, Prins A, Ploemacher RE, Wognum BW, Wagemaker G, Lowenberg B, Wielenga JJ . Long-term leukemia-initiating capacity of a CD34-subpopulation of acute myeloid leukemia Blood 1996 87: 2187–2194

    CAS  PubMed  Google Scholar 

  50. Shultz LD, Schweitzer PA, Chritianson SW, Gott B, Schweitzer IB, Tennent B, McKenna S, Mobraaten L, Rajan TV, Greiner DL . Multiple defects in innate and adaptive immunological function in NOD/LtSz-scid mice J Immunol 1995 154: 180–191

    CAS  PubMed  Google Scholar 

  51. Wang JC, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay Blood 1997 89: 3919–3924

    CAS  PubMed  Google Scholar 

  52. Larochelle A, Vormoor J, Hanenberg H, Wang JCY, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE . Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mice using retroviral gene marking and cell purification: implications for gene therapy Nat Med 1996 2: 1329–1337

    CAS  PubMed  Google Scholar 

  53. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID- repopulating activity Nat Med 1998 4: 1038–1045

    CAS  PubMed  Google Scholar 

  54. Cashman JD, Lapidot T, Wang JC, Doedens M, Shultz LD, Lansdorp P, Dick JE, Eaves CJ . Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice Blood 1997 89: 4307–4316

    CAS  PubMed  Google Scholar 

  55. Terstappen LW, Huang S, Safford M, Lansdorp PM, Loken MR . Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells Blood 1991 77: 1218–1227

    CAS  PubMed  Google Scholar 

  56. Robin C, Pflumio F, Vainchenker W, Coulombel L . Identification of lymphomyeloid primitive progenitor cells in fresh human cord blood and in the marrow of nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice transplanted with human CD34(+) cord blood cells J Exp Med 1999 189: 1601–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Conneally E, Cashman J, Petzer A, Eaves C . Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho–myeloid repopulating activity in nonobese diabetic-scid/scid mice Proc Natl Acad Sci USA 1997 94: 9836–9841

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hogan CJ, Shpall EJ, Keller G . Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice Proc Natl Acad Sci USA 2002 99: 413–418

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kerre TC, De Smet G, De Smedt M, Offner F, De Bosscher J, Plum J, Vandekerckhove B . Both CD34(+)38(+) and CD34(+)38(−) cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion J Immunol 2001 167: 3692–3698

    CAS  PubMed  Google Scholar 

  60. Verstegen MM, van Hennik PB, Terpstra W, van den Bos C, Wielenga JJ, van Rooijen N, Ploemacher RE, Wagemaker G, Wognum AW . Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38− cells Blood 1998 91: 1966–1976

    CAS  PubMed  Google Scholar 

  61. van Hennik PB, Verstegen MM, Bierhuizen MF, Limon A, Wognum AW, Cancelas JA, Barquinero J, Ploemacher RE, Wagemaker G . Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice Blood 1998 92: 4013–4022

    CAS  PubMed  Google Scholar 

  62. Guenechea G, Gan O, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential Nat Immunol 2001 2: 75–82

    CAS  PubMed  Google Scholar 

  63. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T . Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 1999 283: 845–848

    CAS  PubMed  Google Scholar 

  64. Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T . Rapid and efficient homing of human CD34(+)CD38(−/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice Blood 2001 97: 3283–3291

    CAS  PubMed  Google Scholar 

  65. Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, Kelvin D, Dale L, Ferguson SS, Wu D, Fellows F, Bhatia M . The human hematopoietic stem cell compartment is heterogeneous for CXCR4 expression Proc Natl Acad Sci USA 2000 97: 14626–14631

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice Proc Natl Acad Sci USA 1997 94: 5320–5325

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, Deutsch V, Gunetti M, Piacibello W, Nagler A, Lapidot T . Human CD34+CXCR4− sorted cells harbor intracellular CXCR4, which can functionally be expressed and provide NOD/SCID repopulation Blood (in press)

  68. Hogan CJ, Shpall EJ, McNulty O, McNiece I, Dick JE, Shultz LD, Keller G . Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice Blood 1997 90: 85–96

    CAS  PubMed  Google Scholar 

  69. Wagar EJ, Cromwell MA, Shultz LD, Woda BA, Sullivan JL, Hesselton RM, Greiner DL . Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice J Immunol 2000 165: 518–527

    CAS  PubMed  Google Scholar 

  70. Christianson SW, Greiner DL, Hesselton RA, Leif JH, Wagar EJ, Schweitzer IB, Rajan TV, Gott B, Roopenian DC, Shultz LD . Enhanced human CD4+ T cell engraftment in beta2-microglobulin-deficient NOD-scid mice J Immunol 1997 158: 3578–3586

    CAS  PubMed  Google Scholar 

  71. Kollet O, Peled A, Byk T, Ben-Hur H, Greiner D, Shultz L, Lapidot T . beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function Blood 2000 95: 3102–3105

    CAS  PubMed  Google Scholar 

  72. Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ . Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice J Clin Invest 2001 107: 199–206

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kerre TCC, De Smet G, De Smedt M, Zippelius A, Pittet MJ, Langerak AW, De Bosscher J, Offner F, Vandekerckhove B, Plum J . Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34+ cells Blood 2002 99: 1620–1626

    CAS  PubMed  Google Scholar 

  74. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T . NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells Blood 2002 (in press)

  75. Srour EF, Jetmore A, Wolber FM, Plett PA, Abonour R, Yoder MC, Orschell-Traycoff CM . Homing, cell cycle kinetics and fate of transplanted hematopoietic stem cells Leukemia 2001 15: 1681–1684

    CAS  PubMed  Google Scholar 

  76. Gothot A, van der Loo JC, Clapp DW, Srour EF . Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice Blood 1998 92: 2641–2649

    CAS  PubMed  Google Scholar 

  77. Byk T, Kahn J, Kollet O, Petit I, Peled A, Piacibello W, Lapidot T . G1 CD34+/CD38+ cells potentiate the motility and engraftment of quiescent G0 CD34+/CD38−/low SCID repopulating cells Blood 2000 96: 288a (Abstr.)

    Google Scholar 

  78. Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0) Blood 2000 96: 4185–4193

    CAS  PubMed  Google Scholar 

  79. Wilpshaar J, Falkenburg JH, Tong X, Noort WA, Breese R, Heilman D, Kanhai H, Orschell-Traycoff CM, Srour EF . Similar repopulating capacity of mitotically active and resting umbilical cord blood CD34(+) cells in NOD/SCID mice Blood 2000 96: 2100–2107

    CAS  PubMed  Google Scholar 

  80. Lucotti C, Malabarba L, Rosti V, Bergamaschi G, Danova M, Invernizzi R, Pecci A, Ramajoli I, Perotti C, Torretta L, De Amici M, Salvaneschi L, Cazzola M . Cell cycle distribution of cord blood-derived haematopoietic progenitor cells and their recruitment into the S-phase of the cell cycle Br J Haematol 2000 108: 621–628

    CAS  PubMed  Google Scholar 

  81. Luther-Wyrsch A, Costello E, Thali M, Buetti E, Nissen C, Surbek D, Holzgreve W, Gratwohl A, Tichelli A, Wodnar-Filipowicz A . Stable transduction with lentiviral vectors and amplification of immature hematopoietic progenitors from cord blood of preterm human fetuses Hum Gene Ther 2001 12: 377–389

    CAS  PubMed  Google Scholar 

  82. Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL . Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells J Cell Biol 1993 122: 897–902

    CAS  PubMed  Google Scholar 

  83. Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF . Homing and engraftment potential of Sca-1(+)lin(−) cells fractionated on the basis of adhesion molecule expression and position in cell cycle Blood 2000 96: 1380–1387

    CAS  PubMed  Google Scholar 

  84. Huttmann A, Liu SL, Boyd AW, Li CL . Functional heterogeneity within rhodamine123(lo) Hoechst33342(lo/sp) primitive hemopoietic stem cells revealed by pyronin Y Exp Hematol 2001 29: 1109–1116

    CAS  PubMed  Google Scholar 

  85. Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI, Reilly J, Carlson JE, Frimberger AE, Stewart FM, Quesenberry PJ . The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit J Exp Med 1998 188: 393–398

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell Science 1996 273: 242–245

    CAS  PubMed  Google Scholar 

  87. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells Blood 1999 94: 2548–2554

    CAS  PubMed  Google Scholar 

  88. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP . Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species Nat Med 1997 3: 1337–1345

    CAS  PubMed  Google Scholar 

  89. Hess DA, Gallacher L, Mei Wu D, Murdoch B, Karanu FN, Bhatia M . In vivo tracking of prospectively isolated CD34+Lin- and CD34-lin- subsets reveals functional regulation among cells within the human stem cell compartment Blood 2001 98: 116b

    Google Scholar 

  90. Gao Z, Fackler MJ, Leung W, Lumkul R, Ramirez M, Theobald N, Malech HL, Civin CI . Human CD34+ cell preparations contain over 100-fold greater NOD/SCID mouse engrafting capacity than do CD34− cell preparations Exp Hematol 2001 29: 910–921

    CAS  PubMed  Google Scholar 

  91. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34- cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells Exp Hematol 1998 26: 353–360

    CAS  PubMed  Google Scholar 

  92. Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani ED . Kinetics of engraftment of CD34(-) and CD34(+) cells from mobilized blood differs from that of CD34(−) and CD34(+) cells from bone marrow Exp Hematol 2000 28: 1071–1079

    CAS  PubMed  Google Scholar 

  93. Zanjani ED, Almeida-Porada G, Harada N, Zeng HQ, Ogawa M . Reversible expression of CD34 by adult human bone marrow long-term engrafting cells in vivo Blood 2001 98: 72a

    Google Scholar 

  94. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S . Ex vivo generation of CD34(+) cells from CD34(−) hematopoietic cells Blood 1999 94: 4053–4059

    CAS  PubMed  Google Scholar 

  95. Kato S, Ando K, Nakamura Y, Muguruma Y, Sato T, Yabe H, Yabe M, Hattori K, Yasuda Y, Hotta T . Absence of a CD34- hematopoietic precursor population in recipients of CD34+ stem cell transplantation Bone Marrow Transplant 2001 28: 587–595

    CAS  PubMed  Google Scholar 

  96. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ . Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell Cell 2001 105: 369–377

    CAS  PubMed  Google Scholar 

  97. Dao MA, Pepper KA, Nolta JA . Long-term cytokine production from engineered primary human stromal cells influences human hematopoiesis in an in vivo xenograft model Stem Cells 1997 15: 443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA, Gewirtz AM, Emerson SG, Ratajczak MZ . Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner Blood 2001 97: 3075–3085

    CAS  PubMed  Google Scholar 

  99. Aiuti A, Turchetto L, Cota M, Cipponi A, Brambilla A, Arcelloni C, Paroni R, Vicenzi E, Bordignon C, Poli G . Human CD34(+) cells express CXCR4 and its ligand stromal cell-derived factor-1. Implications for infection by T-cell tropic human immunodeficiency virus Blood 1999 94: 62–73

    CAS  PubMed  Google Scholar 

  100. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C, Bousse-Kerdiles MC . Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism Blood 2002 99: 1117–1129

    CAS  PubMed  Google Scholar 

  101. Viardot A, Kronenwett R, Deichmann M, Haas R . The human immunodeficiency virus (HIV)-type 1 coreceptor CXCR-4 (fusin) is preferentially expressed on the more immature CD34+ hematopoietic stem cells Ann Hematol 1998 77: 193–197

    CAS  PubMed  Google Scholar 

  102. Novelli EM, Ruyaner D, Chopra RK, Cheng L, Deans B, McIntosh KR, Civin C, Mosca JD . Human mesenchymal stem cells can enhance human CD34+ cell repopulating of NOD/SCID mice Blood 1998 92: 117a

    Google Scholar 

  103. Noort WA, Kruisselbrink AB, de Paus RA, Heemskerk MHM, Willemze R, Fibbe WE . Co-transplantation of mesenchymal stem cells (MSC) and UCBCD34(+) cells results in enhanced hematopoietic engraftment in NOD/SCID mice without homing of MSC to the bone marrow Blood 2001 98: 1243 (Abstr.)

    Google Scholar 

  104. El-Badri NS, Wang BY, Cherry, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells Exp Hematol 1998 26: 110–116

    CAS  PubMed  Google Scholar 

  105. Bonnet D, Bhatia M, Wang JC, Kapp U, Dick JE . Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice Bone Marrow Transplant 1999 23: 203–209

    CAS  PubMed  Google Scholar 

  106. Adams GB, Chabner KT, Foxall RB, Rodriques NP, Poznansky MC, Scadden DT . Lymphocyte augmentation of hematopoietic stem cell engraftment is due to cooperative effects of CD8+ T cells on CD34+ cell migration Blood 2000 96: 2490 (Abstr.)

    Google Scholar 

  107. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlondorff D . Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection Nat Med 2000 6: 769–775

    CAS  PubMed  Google Scholar 

  108. Zanjani ED, Flake AW, Almeida-Porada G, Tran N, Papayannopoulou T . Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function Blood 1999 94: 2515–2522

    CAS  PubMed  Google Scholar 

  109. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V, Slav MM, Nagler A, Lider O, Alon R, Zipori D, Lapidot T . The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice Blood 2000 95: 3289–3296

    CAS  PubMed  Google Scholar 

  110. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R . The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow J Clin Invest 1999 104: 1199–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kollet O, Spiegel A, Dar A, Samira S, Chen YQ, Shafritz DA, Suriawinata J, Thung S, Seis-Dedos FA, Nagler A, Revel M, Lapidot T . Involvement of SDF-1/CXCR4 interactions in the migration of immature human CD34+cells into the liver of transplanted NOD/SCID mice Blood 2001 98: 2297 (Abstr.)

    Google Scholar 

  112. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, Le Bousse-Kerdiles MC . Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival Blood 2000 95: 756–768

    CAS  PubMed  Google Scholar 

  113. Broxmeyer HE, Youn BS, Kim C, Hangoc G, Cooper S, Mantel C . Chemokine regulation of hematopoiesis and the involvement of pertussis toxin-sensitive G alpha i proteins Ann NY Acad Sci 2001 938: 117–127 discussion 127–138

    CAS  PubMed  Google Scholar 

  114. Cashman J, Clark-Lewis I, Eaves A, Eaves C . Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice Blood 2002 99: 792–799

    CAS  PubMed  Google Scholar 

  115. Glimm H, Tang P, Clark-Lewis I, von Kalle C, Eaves C . Ex vivo treatment of proliferating human cord blood stem cells with stroma-derived factor-1 enhances their ability to engraft NOD/SCID mice Blood 2002 99: 3454–3457

    CAS  PubMed  Google Scholar 

  116. Hernandez-Lopez C, Varas A, Sacedon R, Jimenez E, Munoz JJ, Zapata AG, Vicente A . Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development Blood 2002 99: 546–554

    CAS  PubMed  Google Scholar 

  117. Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR . In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation Blood 2001 97: 799–804

    CAS  PubMed  Google Scholar 

  118. Spencer A, Jackson J, Baulch-Brown C . Enumeration of bone marrow ‘homing’ haemopoietic stem cells from G-CSF-mobilised normal donors and influence on engraftment following allogeneic transplantation Bone Marrow Transplant 2001 28: 1019–1022

    CAS  PubMed  Google Scholar 

  119. Podesta M . Transplantation hematopoiesis Curr Opin Hematol 2001 8: 331–336

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Lapidot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapidot, T., Kollet, O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia 16, 1992–2003 (2002). https://doi.org/10.1038/sj.leu.2402684

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402684

Keywords

This article is cited by

Search

Quick links