Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

PNH

Large granular lymphocyte (LGL)-like clonal expansions in paroxysmal nocturnal hemoglobinuria (PNH) patients

Abstract

In paroxysmal nocturnal hemoglobinuria (PNH), clonal expansion of glycosylphosphatidylinositol-anchored proteins (GPI-AP)-deficient cells leads to a syndrome characterized by hemolytic anemia, marrow failure, and venous thrombosis. PNH is closely related to aplastic anemia and may share its immune pathophysiology. In vivo expansion of dominant T-cell clones can reflect an antigen-driven immune response but may also represent autonomous proliferation, such as in large granular lymphocytic (LGL)-leukemia. T-cell clonality can be assessed by a combination of T-cell receptor (TCR) flow cytometry and complementarity-determining-region-3 (CDR3) molecular analysis. We studied 24 PNH patients for evidence of in vivo dominant T-cell responses by flow cytometry; TCR-Vβ-specific expansions were identified in all patients. In four cases, extreme expansions of one Vβ-subset of CD8+/CD28-/CD56+ (effector) phenotype mimicked subclinical LGL-disease. The monoclonality of these expansions was inferred from unique CDR3-size peak distributions and sequencing of dominant clonotypes. We conclude that the molecular analysis of TCR-β chain may demonstrate clonal LGL-like expansions at unexpected frequency in PNH patients. Our observations blur the classical boundaries between different bone marrow failure syndromes such as AA, PNH, and LGL, and support the hypothesis that in PNH, the mutant clone may expand as a result of an immune-escape from antigen-driven lymphocyte attack on hematopoietic progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T et al. Dificiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 1993; 73: 703–711.

    Article  CAS  PubMed  Google Scholar 

  2. Luzzatto L, Bessler M, Rotoli B . Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise. Cell 1997; 88: 1–4.

    Article  CAS  PubMed  Google Scholar 

  3. Young NS, Maciejewski JP . Genetic and environmental effects in paroxysmal nocturnal hemoglobinuria: this little PIG-A goes ‘Why? Why? Why?’. J Clin Invest 2000; 106: 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hillmen P, Lewis SM, Bessler M, Luzzatto L, Dacie JV . Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995; 333: 1253–1258.

    Article  CAS  PubMed  Google Scholar 

  5. Maciejewski JP, Follman D, Rivera CE, Brown K, Simonis T, Young NS . Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal hemoglobinuria and PNH/aplastic anemia syndrome. Blood 2001; 98: 3513–3519.

    Article  CAS  PubMed  Google Scholar 

  6. Karadimitris A, Manavian JS, Thaler HT, Notaro R, Araten DJ, Nafa K et al. Abnormal T-cell repertoire is consistent with immune process underlying the pathogenesis of paroxysmal nocturnal hemoglobinuria. Blood 2000; 96: 2613–2620.

    CAS  PubMed  Google Scholar 

  7. Risitano AM, Kook H, Zeng W, Chen G, Young NS, Maciejewski JP . Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by Vβ CDR3 spectratyping and flow cytometry. Blood 2002; 100: 178–183.

    Article  CAS  PubMed  Google Scholar 

  8. Kronenberg M, Siu G, Hood LE, Shastri N . The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. Annu Rev Immunol 1996; 4: 529–591.

    Article  Google Scholar 

  9. Plasilova M, Risitano A, Maciejewski JP . Application of the molecular analysis of the T-cell receptor repertoire in the study of immune-mediated hematologic diseases. Hematology 2003; 8: 173–181.

    Article  CAS  PubMed  Google Scholar 

  10. van den Beemd R, Boor PP, van Lochem EG, Hop WC, Langerak AW, Wolvers-Tettero IL et al. Flow cytometric analysis of the Vbeta repertoire in healthy controls. Cytometry 2000; 40: 336–345.

    Article  CAS  PubMed  Google Scholar 

  11. Pannetier C, Even J, Kourilsky P . T cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol Today 1995; 16: 176–181.

    Article  CAS  PubMed  Google Scholar 

  12. Even J, Lim A, Puisieux I, Ferradini L, Dietrich PY, Toubert A et al. T-cell repertoires in healthy and diseased human tissues analysed by T-cell receptor β-chain CDR3 size determination: evidence for oligoclonal expansions in tumours and inflammatory diseases. Res Immunol 1995; 146: 65–80.

    Article  CAS  PubMed  Google Scholar 

  13. Risitano AM, Maciejewski JP, Green S, Plasilova M, Weng Z, Young NS . In vivo dominant immune responses in aplastic anemia patients: molecular tracking of putatively pathogenic T cell clones by TCR-β-CDR3 sequencing. Lancet 2004; 364: 355–364.

    Article  CAS  PubMed  Google Scholar 

  14. Plasilova M, Risitano AM, O'Keefe CL, Rodriguez R, Wlodarski M, Young NS et al. Shared and individual specificities of immunodominant cytotoxic T cell clones in paroxysmal nocturnal hemoglobinuria as determined by molecular analysis. Exp Hematol 2004; 32: 261–269.

    Article  CAS  PubMed  Google Scholar 

  15. Kochenderfer JN, Kobayashi S, Wieder ED, Su C, Molldrem JJ . Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood 2002; 100: 3639–3645.

    Article  CAS  PubMed  Google Scholar 

  16. Lamy T, Loughran Jr TP . Clinical features of large granular lymphocytic leukemia. Semin Hematol 2003; 40: 185–195.

    Article  PubMed  Google Scholar 

  17. O'Keefe C, Plasilova M, Risitano A, Rodriguez A, Wlodarski M, Young NS et al. Molecular analysis of TCR clonotypes in LGL: a clonal model for polyclonal responses. J Immunol 2004; 172: 1960–1969.

    Article  CAS  PubMed  Google Scholar 

  18. Karadimitris A, Li K, Notaro R, Araten DJ, Nafa K, Thertulien R et al. Association of clonal T-cell large granular lymphocyte disease and paroxysmal nocturnal haemoglobinuria (PNH): further evidence for a pathogenetic link between T cells, aplastic anaemia and PNH. Br J Haematol 2001; 115: 1010–1014.

    Article  CAS  PubMed  Google Scholar 

  19. Dunn DE, Tannawattanacharoen P, Boccuni P, Nagakura S, Green SW, Kirby MR et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann Intern Med 1999; 131: 401–408.

    Article  CAS  PubMed  Google Scholar 

  20. International Agranulocytosis and Aplastic Anemia Study. Incidence of aplastic anemia: the relevance of diagnostic criteria. Blood 1987; 70: 1718–1723.

  21. Zeng W, Maciejewski JP, Chen G, Young NS . Limited heterogeneity of T-cell receptor VB usage in aplastic anemia. J Clin Invest 2001; 108: 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Semenzato G, Zambello R, Starkebaum G, Oshimi K, Loughran Jr TP . The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood 1997; 89: 256–260.

    CAS  PubMed  Google Scholar 

  23. Kanchan K, Loughran Jr TP . Antigen-driven clonal T cell expansion in disorders of hematopoiesis. Leuk Res 2003; 27: 291–292.

    Article  CAS  PubMed  Google Scholar 

  24. Epling-Brunette PK, Loughran Jr TP . Survival signals in leukemic large granular lymphocytes. Semin Hematol 2003; 40: 213–220.

    Article  Google Scholar 

  25. McHeyzer-Williams LJ, Panus JF, Mikszta JA, McHeyzer-Williams MG . Evolution of antigen-specific T cell receptors in vivo: preimmune and antigen-driven selection of preferred complementarity-determining region 3 (CDR3) motifs. J Exp Med 1999; 189: 1823–1838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akashi K, Shibuya T, Taniguchi S, Hayashi S, Iwasaki H, Teshima T et al. Multiple autoimmune haemopoietic disorders and insidious clonal proliferation of large granular lymphocytes. Br J Haematol 1999; 107: 670–673.

    Article  CAS  PubMed  Google Scholar 

  27. Bowman SJ, Bhavnani M, Geddes GC, Corrigall V, Boylston AW, Panayi GS et al. Large granular lymphocyte expansions in patients with Felty's syndrome: analysis using anti-T cell receptor V beta-specific monoclonal antibodies. Clin Exp Immunol 1995; 101: 18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kook H, Zeng W, Guibin C, Kirby M, Young NS, Maciejewski JP . Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol 2001; 29: 1270–1277.

    Article  CAS  PubMed  Google Scholar 

  29. Young NS, Maciejewski J . The pathophysiology of acquired aplastic anemia. N Engl J Med 1997; 336: 1365–1372.

    Article  CAS  PubMed  Google Scholar 

  30. Young NS . Hematopoietic cell destruction by immune mechanisms in aquired aplastic anemia. Semin Hematol 2000; 37: 3–14.

    Article  CAS  PubMed  Google Scholar 

  31. Maciejewski JP, Rivera C, Kook H, Dunn D, Young NS . Relationship between bone marrow failure syndromes and the presence of glycophosphatidyl inositol-anchored protein-deficient clones. Br J Haematol 2001; 115: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Chuhjo T, Yasue S, Omine M, Nakao S . Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood 2002; 100: 3897–3902.

    Article  CAS  PubMed  Google Scholar 

  33. Murakami Y, Kosaka H, Maeda Y, Nishimura J, Inoue N, Ohishi K et al. Ineffecient response of T lymphocytes to glycosylphosphatidylinositol anchor-negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood 2002; 100: 4116–4122.

    Article  CAS  PubMed  Google Scholar 

  34. Nagakura S, Ishihara S, Dunn DE, Nishimura J, Kawaguchi T, Horikawa K et al. Decreased susceptibility of leukemic cells with PIG-A mutation to natural killer cells in vitro. Blood 2002; 100: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  35. Kai T, Shichishima T, Noji H, Yamamoto T, Okamoto M, Ikeda K et al. Phenotypes and phosphatidylinositol glycan-class A gene abnormalities during cell differentiation and maturation from precursor cells to mature granulocytes in patients with paroxysmal nocturnal hemoglobinuria. Blood 2002; 100: 3812–3818.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Risitano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risitano, A., Maciejewski, J., Muranski, P. et al. Large granular lymphocyte (LGL)-like clonal expansions in paroxysmal nocturnal hemoglobinuria (PNH) patients. Leukemia 19, 217–222 (2005). https://doi.org/10.1038/sj.leu.2403617

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403617

Keywords

This article is cited by

Search

Quick links