Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Lymphoblastic Leukemia

Wilms' tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring

Abstract

Wilms' tumor gene 1 (WT1) is overexpressed in the majority (70–90%) of acute leukemias and has been identified as an independent adverse prognostic factor, a convenient minimal residual disease (MRD) marker and potential therapeutic target in acute leukemia. We examined WT1 expression patterns in childhood acute lymphoblastic leukemia (ALL), where its clinical implication remains unclear. Using a real-time quantitative PCR designed according to Europe Against Cancer Program recommendations, we evaluated WT1 expression in 125 consecutively enrolled patients with childhood ALL (106 BCP-ALL, 19 T-ALL) and compared it with physiologic WT1 expression in normal and regenerating bone marrow (BM). In childhood B-cell precursor (BCP)-ALL, we detected a wide range of WT1 levels (5 logs) with a median WT1 expression close to that of normal BM. WT1 expression in childhood T-ALL was significantly higher than in BCP-ALL (P<0.001). Patients with MLL-AF4 translocation showed high WT1 overexpression (P<0.01) compared to patients with other or no chromosomal aberrations. Older children (10 years) expressed higher WT1 levels than children under 10 years of age (P<0.001), while there was no difference in WT1 expression in patients with peripheral blood leukocyte count (WBC) 50 × 109/l and lower. Analysis of relapsed cases (14/125) indicated that an abnormal increase or decrease in WT1 expression was associated with a significantly increased risk of relapse (P=0.0006), and this prognostic impact of WT1 was independent of other main risk factors (P=0.0012). In summary, our study suggests that WT1 expression in childhood ALL is very variable and much lower than in AML or adult ALL. WT1, thus, will not be a useful marker for MRD detection in childhood ALL, however, it does represent a potential independent risk factor in childhood ALL. Interestingly, a proportion of childhood ALL patients express WT1 at levels below the normal physiological BM WT1 expression, and this reduced WT1 expression appears to be associated with a higher risk of relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3

Similar content being viewed by others

References

  1. Sugiyama H . Wilms' tumor gene WT1: its oncogenic function and clinical application. Int J Hematol 2001; 73: 177–187.

    Article  CAS  PubMed  Google Scholar 

  2. Sugiyama H . Wilms tumor gene WT1 as a tumor marker for leukemic blast cells and its role in leukemogenesis. Methods Mol Med 2002; 68: 223–237.

    CAS  PubMed  Google Scholar 

  3. Scharnhorst V, van der Eb AJ, Jochemsen AG . WT1 proteins: functions in growth and differentiation. Gene 2001; 273: 141–161.

    Article  CAS  PubMed  Google Scholar 

  4. Menssen HD, Renkl HJ, Rodeck U, Maurer J, Notter M, Schwartz S et al. Presence of Wilms' tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 1995; 9: 1060–1067.

    CAS  PubMed  Google Scholar 

  5. Menssen HD, Siehl JM, Thiel E . Wilms tumor gene (WT1) expression as a panleukemic marker. Int J Hematol 2002; 76: 103–109.

    Article  CAS  PubMed  Google Scholar 

  6. Wagner KD, Wagner N, Schedl A . The complex life of WT1. J Cell Sci 2003; 116 (Part 9): 1653–1658.

    Article  CAS  PubMed  Google Scholar 

  7. Little M, Holmes G, Walsh P . WT1: what has the last decade told us? Bioessays 1999; 21: 191–202.

    Article  CAS  PubMed  Google Scholar 

  8. Moorwood K, Salpekar A, Ivins SM, Hall J, Powlesland RM, Brown KW et al. Transactivation of the WT1 antisense promoter is unique to the WT1[+/−] isoform. FEBS Lett 1999; 456: 131–136.

    Article  CAS  PubMed  Google Scholar 

  9. Lee SB, Haber DA . Wilms tumor and the WT1 gene. Exp Cell Res 2001; 264: 74–99.

    Article  CAS  PubMed  Google Scholar 

  10. Loeb DM, Sukumar S . The role of WT1 in oncogenesis: tumor suppressor or oncogene? Int J Hematol 2002; 76: 117–126.

    Article  CAS  PubMed  Google Scholar 

  11. Caricasole A, Duarte A, Larsson SH, Hastie ND, Little M, Holmes G et al. RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci USA 1996; 93: 7562–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Little NA, Hastie ND, Davies RC . Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum Mol Genet 2000; 9: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  13. Menke AL, Clarke AR, Leitch A, Ijpenberg A, Williamson KA, Spraggon L et al. Genetic interactions between the Wilms' tumor 1 gene and the p53 gene. Cancer Res 2002; 62: 6615–6620.

    CAS  PubMed  Google Scholar 

  14. Karakas T, Miething CC, Maurer U, Weidmann E, Ackermann H, Hoelzer D et al. The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 2002; 16: 846–854.

    Article  CAS  PubMed  Google Scholar 

  15. Loeb DM, Korz D, Katsnelson M, Burwell EA, Friedman AD, Sukumar S . Cyclin E is a target of WT1 transcriptional repression. J Biol Chem 2002; 277: 19627–19632.

    Article  CAS  PubMed  Google Scholar 

  16. Idelman G, Glaser T, Roberts Jr CT, Werner H . WT1-p53 interactions in insulin-like growth factor-I receptor gene regulation. J Biol Chem 2003; 278: 3474–3482. E-pub 2002 Nov 19.

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter B, Hill KJ, Charalambous M, Wagner KJ, Lahiri D, James DI et al. BASP1 is a transcriptional cosuppressor for the Wilms' tumor suppressor protein WT1. Regulation of the Wilms' tumour suppressor protein transcriptional activation domain. Mol Cell Biol 2004; 24: 537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND . The Wilms' tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet 2004; 13: 463–471. E-pub 2003 Dec 17.

    Article  CAS  PubMed  Google Scholar 

  19. Dallosso AR, Hancock AL, Brown KW, Williams AC, Jackson S, Malik K . Genomic imprinting at the WT1 gene involves a novel coding transcript (AWT1) that shows deregulation in Wilms' tumours. Hum Mol Genet 2004; 13: 405–415. E-pub 2003 Dec 17.

    Article  CAS  PubMed  Google Scholar 

  20. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA . The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. Embo J 2001; 20: 1897–1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms' tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  22. Loeb DM, Summers JL, Burwell EA, Korz D, Friedman AD, Sukumar S . An isoform of the Wilms' tumor suppressor gene potentiates granulocytic differentiation. Leukemia 2003; 17: 965–971.

    Article  CAS  PubMed  Google Scholar 

  23. Sugiyama H . Wilms tumor gene (WT1) as a new marker for the detection of minimal residual disease in leukemia. Leuk Lymphoma 1998; 30: 55–61.

    Article  CAS  PubMed  Google Scholar 

  24. Bergmann L, Maurer U, Weidmann E . Wilms tumor gene expression in acute myeloid leukemias. Leuk Lymphoma 1997; 25: 435–443.

    Article  CAS  PubMed  Google Scholar 

  25. Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  26. Niegemann E, Wehner S, Kornhuber B, Schwabe D, Ebener U . wt1 gene expression in childhood leukemias. Acta Haematol 1999; 102: 72–76.

    Article  CAS  PubMed  Google Scholar 

  27. Ozgen U, Anak S, Ozbek U, Sarper N, Eryilmaz E, Agaoglu L et al. wt1 gene expression in childhood acute leukemias. Acta Haematol 2000; 103: 229–230.

    Article  CAS  PubMed  Google Scholar 

  28. Chen Z . The possible role and application of WT1 in human leukemia. Int J Hematol 2001; 73: 39–46.

    Article  CAS  PubMed  Google Scholar 

  29. Kreuzer KA, Saborowski A, Lupberger J, Appelt C, Na IK, le Coutre P et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms' tumour gene (WT1) mRNA: implications for monitoring human leukaemias. Br J Haematol 2001; 114: 313–318.

    Article  CAS  PubMed  Google Scholar 

  30. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002; 16: 2115–2121.

    Article  CAS  PubMed  Google Scholar 

  31. Cilloni D, Saglio G . WT1 as a universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Haematol 2004; 112: 79–84.

    Article  CAS  PubMed  Google Scholar 

  32. Trka J, Kalinova M, Hrusak O, Zuna J, Krejci O, Madzo J et al. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia 2002; 16: 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  33. Bergmann L, Miething C, Maurer U, Brieger J, Karakas T, Weidmann E et al. High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 1997; 90: 1217–1225.

    CAS  PubMed  Google Scholar 

  34. Schmid D, Heinze G, Linnerth B, Tisljar K, Kusec R, Geissler K et al. Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia. Leukemia 1997; 11: 639–643.

    Article  CAS  PubMed  Google Scholar 

  35. Gaiger A, Linnerth B, Mann G, Schmid D, Heinze G, Tisljar K et al. Wilms' tumour gene (wt1) expression at diagnosis has no prognostic relevance in childhood acute lymphoblastic leukaemia treated by an intensive chemotherapy protocol. Eur J Haematol 1999; 63: 86–93.

    Article  CAS  PubMed  Google Scholar 

  36. Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui CH et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001; 97: 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  37. Kletzel M, Olzewski M, Huang W, Chou PM . Utility of WT1 as a reliable tool for the detection of minimal residual disease in children with leukemia. Pediatr Dev Pathol 2002; 5: 269–275.

    Article  PubMed  Google Scholar 

  38. Siehl JM, Thiel E, Leben R, Reinwald M, Knauf W, Menssen HD . Quantitative real-time RT-PCR detects elevated Wilms tumor gene (WT1) expression in autologous blood stem cell preparations (PBSCs) from acute myeloid leukemia (AML) patients indicating contamination with leukemic blasts. Bone Marrow Transplant 2002; 29: 379–381.

    Article  CAS  PubMed  Google Scholar 

  39. Garg M, Moore H, Tobal K, Liu Yin JA . Prognostic significance of quantitative analysis of WT1 gene transcripts by competitive reverse transcription polymerase chain reaction in acute leukaemia. Br J Haematol 2003; 123: 49–59.

    Article  CAS  PubMed  Google Scholar 

  40. Tamaki H, Mishima M, Kawakami M, Tsuboi A, Kim EH, Hosen N et al. Monitoring minimal residual disease in leukemia using real-time quantitative polymerase chain reaction for Wilms tumor gene (WT1). Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Int J Hematol 2003; 78: 349–356.

    Article  CAS  PubMed  Google Scholar 

  41. Magyarosy E, Varga N, Timar J, Raso E . Follow-up of minimal residual disease in acute childhood lymphoblastic leukemia by WT1 gene expression in the peripheral blood: the Hungarian experience. Pediatr Hematol Oncol 2003; 20: 65–74.

    Article  CAS  PubMed  Google Scholar 

  42. Barragan E, Cervera J, Bolufer P, Ballester S, Martin G, Fernandez P et al. Prognostic iplications of Wilms' tumor gene (WT1) expression in patients with de novo acute myeloid leukemia. Haematologica 2004; 89: 926–933.

    CAS  PubMed  Google Scholar 

  43. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E, Hokland P . WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients – results from a single-centre study. Br J Haematol 2004; 125: 590–600.

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 2003; 101: 1698–1704.

    Article  CAS  PubMed  Google Scholar 

  45. Uzunel M, Jaksch M, Mattsson J, Ringden O, Brune M, Johansson JE et al. Minimal residual disease detection after allogeneic stem cell transplantation is correlated to relapse in patients with acute lymphoblastic leukaemia. Kinetics of minimal residual disease and chimerism in patients with chronic myeloid leukemia after nonmyeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 2003; 122: 788–794.

    Article  PubMed  Google Scholar 

  46. Ramirez O, Linares A, Trujillo ML, Caminos JE . WT1 mRNA in cerebrospinal fluid associated with relapse in pediatric lymphoblastic leukemia. J Pediatr Hematol Oncol 2003; 25: 453–458.

    Article  PubMed  Google Scholar 

  47. Renshaw J, King-Underwood L, Pritchard-Jones K . Differential splicing of exon 5 of the Wilms tumour (WTI) gene. Genes Chromosomes Cancer 1997; 19: 256–266.

    Article  CAS  PubMed  Google Scholar 

  48. Siehl JM, Reinwald M, Heufelder K, Menssen HD, Keilholz U, Thiel E et al. Expression of Wilms' tumor gene 1 at different stages of acute myeloid leukemia and analysis of its major splice variants. Possible regulation of Wilms' tumour gene 1 (WT1) expression by the paired box genes PAX2 and PAX8 and by the haematopoietic transcription factor GATA-1 in human acute myeloid leukaemias. Ann Hematol 2004; 31: 31.

    Google Scholar 

  49. Elisseeva OA, Oka Y, Tsuboi A, Ogata K, Wu F, Kim EH et al. Humoral immune responses against Wilms tumor gene WT1 product in patients with hematopoietic malignancies. Blood 2002; 99: 3272–3279.

    Article  CAS  PubMed  Google Scholar 

  50. Scheibenbogen C, Letsch A, Thiel E, Schmittel A, Mailaender V, Baerwolf S et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 2002; 100: 2132–2137.

    Article  CAS  PubMed  Google Scholar 

  51. Sugiyama H . Cancer immunotherapy targeting WT1 protein. Int J Hematol 2002; 76: 127–132.

    Article  CAS  PubMed  Google Scholar 

  52. Rosenfeld C, Cheever MA, Gaiger A . WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia 2003; 17: 1301–1312.

    Article  CAS  PubMed  Google Scholar 

  53. Oka Y, Tsuboi A, Murakami M, Hirai M, Tominaga N, Nakajima H et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Int J Hematol 2003; 78: 56–61.

    Article  CAS  PubMed  Google Scholar 

  54. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  55. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) – a Europe against cancer program. Leukemia 2003; 17: 2474–2486.

    Article  CAS  PubMed  Google Scholar 

  56. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  57. Foroni L, Harrison CJ, Hoffbrand AV, Potter MN . Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol 1999; 105: 7–24.

    CAS  PubMed  Google Scholar 

  58. Campana D . Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121: 823–838.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Katerina Muzikova from the laboratories of Department of Pediatric Hematology and Oncology, Prague, for the help with processing of samples, Tony Fitzgerald from Haughton Institute, St James's Hospital, Dublin and Marek Omelka from Deptartment of probability and mathematical statistics, Faculty of mathematics and physics of Charles University, Prague, for the help with statistical evaluation of the data. The collaboration of the Czech Pediatric Hematology Working Group centers is highly appreciated. This work has been supported by the HEA PRTLI, Children's Leukemia Research Project, Children's Medical and Research Foundation OLHSC, IGA (Czech Ministry of Health) 7439 and MSM (Czech Ministry of Education) 0021620813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Boublikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boublikova, L., Kalinova, M., Ryan, J. et al. Wilms' tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 20, 254–263 (2006). https://doi.org/10.1038/sj.leu.2404047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404047

Keywords

This article is cited by

Search

Quick links