Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis

Abstract

MicroRNAs (miRNAs) are short single-stranded RNAs that have a potentially important role in gene regulation. Using a quantitative real-time polymerase chain reaction assay specific to the mature miRNA, the expression level of a selected group of haematopoietic tissue-specific miRNAs was measured across a set of 30 primary adult acute myeloid leukaemia (AML) with a normal karyotype. The expression levels of each miRNA were correlated with the genome-wide mRNA expression profiles in the same leukaemias. This revealed that miR-181a correlated strongly with the AML morphological sub-type and with the expression of genes previously identified through sequence analysis as potential interaction targets. Three other miRNAs, miR-10a, miR-10b and miR-196a-1, showed a clear correlation with HOX gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Doench JG, Sharp PA . Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18: 504–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A et al. MicroRNA-responsive ‘sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 2004; 36: 1079–1083.

    Article  CAS  PubMed  Google Scholar 

  4. Yekta S, Shih IH, Bartel DP . MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304: 594–596.

    Article  CAS  PubMed  Google Scholar 

  5. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553–563.

    Article  CAS  PubMed  Google Scholar 

  6. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005; 120: 623–634.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  8. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  9. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calin GA, Croce CM . MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 2006; 25: 6202–6210.

    Article  CAS  PubMed  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1: 882–891.

    CAS  PubMed  Google Scholar 

  13. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004; 39: 167–169.

    Article  CAS  PubMed  Google Scholar 

  14. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  15. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005; 334: 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  16. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  18. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 2006; 13: 497–508.

    Article  CAS  PubMed  Google Scholar 

  19. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006; 24: 4677–4684.

    Article  CAS  PubMed  Google Scholar 

  20. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

  21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Debernardi S, Lillington DM, Chaplin T, Tomlinson S, Amess J, Rohatiner A et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer 2003; 37: 149–158.

    Article  CAS  PubMed  Google Scholar 

  24. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  PubMed  Google Scholar 

  25. Griffiths-Jones S . miRBase: the microRNA sequence database. Methods Mol Biol 2006; 342: 129–138.

    CAS  PubMed  Google Scholar 

  26. Chen CZ, Li L, Lodish HF, Bartel DP . MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303: 83–86.

    Article  CAS  PubMed  Google Scholar 

  27. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  28. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . Human MicroRNA Targets. PLoS Biol 2004; 2: e363.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  30. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T . New microRNAs from mouse and human. RNA 2003; 9: 175–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP . Vertebrate microRNA genes. Science 2003; 299: 1540.

    Article  CAS  PubMed  Google Scholar 

  32. Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy Jr JP, Sloand EM et al Hematopoietic-specific microRNA expression in human cells. Leuk Res 2006; 30: 643–647.

    Article  CAS  PubMed  Google Scholar 

  33. Smalheiser NR, Torvik VI . A population-based statistical approach identifies parameters characteristic of human microRNA-mRNA interactions. BMC Bioinformatics 2004; 5: 139.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34: D140–144.

    Article  CAS  PubMed  Google Scholar 

  35. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  36. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scheijen B, Griffin JD . Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene 2002; 21: 3314–3333.

    Article  CAS  PubMed  Google Scholar 

  38. Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska WH, Lansdorp P, Lawrence HJ et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997; 17: 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge D Lillington for karyotype analysis and Professor TA Lister for clinical support. This work has been supported by grants from the Kay Kendall Leukaemia Fund and the Barts and London Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B D Young.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debernardi, S., Skoulakis, S., Molloy, G. et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia 21, 912–916 (2007). https://doi.org/10.1038/sj.leu.2404605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404605

Keywords

This article is cited by

Search

Quick links