Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia

Abstract

To test the role of telomere biology in T-cell prolymphocytic leukemia (T-PLL), a rare aggressive disease characterized by the expansion of a T-cell clone derived from immuno-competent post-thymic T-lymphocytes, we analyzed telomere length and telomerase activity in subsets of peripheral blood leukocytes from 11 newly diagnosed or relapsed patients with sporadic T-PLL. Telomere length values of the leukemic T cells (mean±s.d.: 1.53±0.65 kb) were all below the 1st percentile of telomere length values observed in T cells from healthy age-matched controls whereas telomere length of normal T- and B cells fell between the 1st and 99th percentile of the normal distribution. Leukemic T cells exhibited high levels of telomerase and were sensitive to the telomerase inhibitor BIBR1532 at doses that showed no effect on normal, unstimulated T cells. Targeting the short telomeres and telomerase activity in T-PLL seems an attractive strategy for the future treatment of this devastating disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 1991; 78: 3269–3274.

    CAS  PubMed  Google Scholar 

  2. Dearden CE . T-cell prolymphocytic leukemia. Med Oncol 2006; 23: 17–22.

    Article  PubMed  Google Scholar 

  3. Dearden CE, Matutes E, Cazin B, Tjonnfjord GE, Parreira A, Nomdedeu B et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1 H. Blood 2001; 98: 1721–1726.

    Article  CAS  PubMed  Google Scholar 

  4. Moyzis R, Buckingham J, Cram L, Dani M, Deaven L, Jones M et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988; 85: 6622–6626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smogorzewska A, de Lange T . Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004; 73: 177–208.

    Article  CAS  PubMed  Google Scholar 

  6. Griffith J, Comeau L, Rosenfield S, Stansel R, Bianchi A, Moss H et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503–514.

    Article  CAS  PubMed  Google Scholar 

  7. Campisi J . Cancer and ageing: rival demons? Nat Rev Cancer 2003; 3: 339–349.

    Article  CAS  PubMed  Google Scholar 

  8. d'Adda dF, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003; 426: 194–198.

    Article  Google Scholar 

  9. Watson JD . Origin of concatameric T4 DNA. Nat New Biol 1972; 239: 197–201.

    Article  CAS  PubMed  Google Scholar 

  10. Olovnikov AM . A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 1973; 41: 181–190.

    Article  CAS  PubMed  Google Scholar 

  11. Lansdorp PM . Major cutbacks at chromosome ends. Trends Biochem Sci 2005; 30: 388–395.

    Article  CAS  PubMed  Google Scholar 

  12. Harley CB, Futcher AB, Greider CW . Telomeres shorten during ageing of human fibroblasts. Nature 1990; 345: 458–460.

    Article  CAS  PubMed  Google Scholar 

  13. Martens UM, Chavez EA, Poon SSS, Schmoor C, Lansdorp PM . Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp Cell Res 2000; 256: 291–299.

    Article  CAS  PubMed  Google Scholar 

  14. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 2000; 406: 641–645.

    Article  CAS  PubMed  Google Scholar 

  15. Blackburn EH . Telomerases. Annu Rev Biochem 1992; 61: 113–129.

    Article  CAS  PubMed  Google Scholar 

  16. Counter CM, Gupta J, Harley CB, Leber B, Bacchetti S . Telomerase activity in normal leukocytes and in hematologic malignancies. Blood 1995; 85: 2315–2320.

    CAS  PubMed  Google Scholar 

  17. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MA . Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  18. Kelland LR . Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics—current status and future prospects. Eur J Cancer 2005; 41: 971–979.

    Article  CAS  PubMed  Google Scholar 

  19. Shay JW, Wright WE . Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 2006; 5: 577–584.

    Article  CAS  PubMed  Google Scholar 

  20. Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E . Natural and pharmacological regulation of telomerase. Nucleic Acids Res 2002; 30: 839–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Asai A, Oshima Y, Yamamoto Y, Uochi TA, Kusaka H, Akinaga S et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 2003; 63: 3931–3939.

    CAS  PubMed  Google Scholar 

  22. Tauchi T, Shin-ya K, Sashida G, Sumi M, Nakajima A, Shimamoto T et al. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: involvement of ATM-dependent DNA damage response pathways. Oncogene 2003; 22: 5338–5347.

    Article  CAS  PubMed  Google Scholar 

  23. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999; 5: 1164–1170.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO . Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 1999; 13: 2388–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Röth A, Yssel H, Pene J, Chavez EA, Schertzer M, Lansdorp PM et al. Telomerase levels control the lifespan of human T lymphocytes. Blood 2003; 102: 849–857.

    Article  PubMed  Google Scholar 

  26. Röth A, Vercauteren S, Sutherland HJ, Lansdorp PM . Telomerase is limiting the growth of acute myeloid leukemia cells. Leukemia 2003; 17: 2410–2417.

    Article  PubMed  Google Scholar 

  27. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001; 20: 6958–6968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ohyashiki JH, Sashida G, Tauchi T, Ohyashiki K . Telomeres and telomerase in hematologic neoplasia. Oncogene 2002; 21: 680–687.

    Article  CAS  PubMed  Google Scholar 

  29. Gesk S, Martin-Subero JI, Harder L, Luhmann B, Schlegelberger B, Calasanz MJ et al. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia 2003; 17: 738–745.

    Article  CAS  PubMed  Google Scholar 

  30. Röth A, Baerlocher GM, Schertzer M, Chavez E, Dührsen U, Lansdorp PM . Telomere loss, senescence, and genetic instability in CD4+ T lymphocytes overexpressing hTERT. Blood 2005; 106: 43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Baerlocher GM, Vulto I, de Jong G, Lansdorp PM . Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protocols 2006; 1: 2365–2376.

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005; 352: 1413–1424.

    Article  CAS  PubMed  Google Scholar 

  33. Alter BP, Baerlocher GM, Savage SA, Chanock SJ, Weksler BB, Willner JP et al. Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita. Blood 2007; 110: 1439–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feldser DM, Hackett JA, Greider CW . Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer 2003; 3: 623–627.

    Article  CAS  PubMed  Google Scholar 

  35. Croce CM, Isobe M, Palumbo A, Puck J, Ming J, Tweardy D et al. Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms. Science 1985; 227: 1044–1047.

    Article  CAS  PubMed  Google Scholar 

  36. Soulier J, Pierron G, Vecchione D, Garand R, Brizard F, Sigaux F et al. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosomes Cancer 2001; 31: 248–254.

    Article  CAS  PubMed  Google Scholar 

  37. Callen E, Surralles J . Telomere dysfunction in genome instability syndromes. Mutat Res 2004; 567: 85–104.

    Article  CAS  PubMed  Google Scholar 

  38. Masutomi K, Yu EY, Khurts S, Ben Porath I, Currier JL, Metz GB et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114: 241–253.

    Article  CAS  PubMed  Google Scholar 

  39. Blackburn EH . Switching and signaling at the telomere. Cell 2001; 106: 661–673.

    Article  CAS  PubMed  Google Scholar 

  40. Blasco MA . Telomerase beyond telomeres. Nat Rev Cancer 2002; 2: 627–633.

    Article  CAS  PubMed  Google Scholar 

  41. Blackburn EH . Telomere states and cell fates. Nature 2000; 408: 53–56.

    Article  CAS  PubMed  Google Scholar 

  42. El Daly H, Kull M, Zimmermann S, Pantic M, Waller CF, Martens UM . Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 2005; 105: 1742–1749.

    Article  CAS  PubMed  Google Scholar 

  43. Ward RJ, Autexier C . Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 2005; 68: 779–786.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor Günter Brittinger on the occasion of his 75th birthday. We thank Anja Führer and Margret Gottlieb for their expert technical assistance. We are grateful to Boehringer Ingelheim Pharma KG (Biberach, Germany) for providing us with BIBR1532. We thank Dr Lana Harder for her help with cytogenetic analyses, Dr Nückel for helping with statistical analysis and Dr Ludger Klein-Hitpass (Institute for Cell Biology, Essen, Germany) for his help with hTERT RT-PCR. This work was supported by a grant from the Bernese Cancer League (to GMB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Röth or G M Baerlocher.

Additional information

Contributions: AR, JD and GMB designed the research; AR, HH, SB and GMB performed the experiments and collected the data; AR, JD, RS and GMB analyzed and interpreted the data; AR, RS, UD, PML and GMB wrote the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röth, A., Dürig, J., Himmelreich, H. et al. Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia 21, 2456–2462 (2007). https://doi.org/10.1038/sj.leu.2404968

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404968

Keywords

This article is cited by

Search

Quick links