Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Article
  • Published:

Schizophrenia, neurodevelopment and corpus callosum

Abstract

The Zeitgeist favors an interpretation of schizophrenia as a condition of abnormal connectivity of cortical neurons, particularly in the prefrontal and temporal cortex. The available evidence points to reduced connectivity, a possible consequence of excessive synaptic pruning in development. A decreased thalamic input to the cerebral cortex appears likely, and developmental studies predict that this decrease should entail a secondary loss of both long- and short-range cortico-cortical connections, including connections between the hemispheres. Indeed, morphological, electrophysiological and neuropsychological studies over the last two decades suggest that the callosal connections are altered in schizophrenics. However, the alterations are subtle and sometimes inconsistent across studies, and need to be investigated further with new methodologies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Parnas J, Bovet P . Autism in schizophrenia revisited. Compr Psychiatry 1991; 32: 7–21.

    CAS  PubMed  Google Scholar 

  2. Andreasen NC . Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science 1997; 275: 1586–1593.

    CAS  PubMed  Google Scholar 

  3. Mountcastle V . An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GE, Mountcastle V (eds). The Mindful Brain. MIT Press: Cambridge, MA, 1978; pp 7–50.

    Google Scholar 

  4. Edelman G . Neural Darwinism. The Theory of Neuronal Group Selection. Basic Books Inc: New York, 1987; p 331.

    Google Scholar 

  5. Engel AK, Roelfsema PR, Fries P, Brecht M, Singer W . Role of the temporal domain for response selection and perceptual binding. Cereb Cortex 1997; 7: 571–582.

    CAS  PubMed  Google Scholar 

  6. Selemon LD, Goldman-Rakic P . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    CAS  PubMed  Google Scholar 

  7. Harrison PJ . The neuropathology of schizophrenia; a critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    PubMed  Google Scholar 

  8. Lewis DA . Is there a neuropathology of schizophrenia? Recent findings converge on altered thalamic–prefrontal cortical connectivity. The Neuroscientist 2000; 6: 208–218.

    Google Scholar 

  9. Lewis DA, Lieberman JA . Catching up on schizophrenia: natural history and neurobiology. Neuron 2000; 28: 325–334.

    CAS  PubMed  Google Scholar 

  10. McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    CAS  PubMed  Google Scholar 

  11. Selemon LD . Regionally diverse cortical pathology in schizophrenia: clues to the etiology of the disease. Schizophrenia Bull 2001; 27: 349–377.

    CAS  Google Scholar 

  12. Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatry Res 1982; 17: 319–334.

    Google Scholar 

  13. Beaumont JC, Dimond S . Brain disconnection and schizophrenia. Br J Psychiatry 1973; 123: 661–662.

    CAS  PubMed  Google Scholar 

  14. Friston KJ, Frith CD . Schizophrenia: a disconnection syndrome? Clin Neurosci 1995; 3: 89–97.

    CAS  PubMed  Google Scholar 

  15. Innocenti GM, Lehmann P, Houzel JC . Computational structure of visual callosal axons. Eur J Neurosci 1994; 6: 918–935.

    CAS  PubMed  Google Scholar 

  16. Innocenti GM . Exuberant development of connections, and its possible permissive role in cortical evolution. Trends Neurosci 1995; 18: 371–426.

    CAS  Google Scholar 

  17. Markram H . A network of tufted layer 5 pyramidal neurons. Cereb Cortex 1997; 7: 523–533.

    CAS  PubMed  Google Scholar 

  18. Zilberter Y, Kaiser KM, Sakmann B . Dendritic GABA release depresses excitatory transmission between layer 2/3 pyramidal and bitufted neurons in rat neocortex. Neuron 1999; 24: 979–988.

    CAS  PubMed  Google Scholar 

  19. Zilberter Y . Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J Physiol 2000; 528: 489–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Parnas J, Bovet P, Innocenti GM . Schizophrenic trait features, binding, and cortico-cortical connectivity: a neurodevelopmental pathogenetic hypothesis. Neurol Psychiatry Brain Res 1996; 4: 185–196.

    Google Scholar 

  21. Crow TJ . Schizophrenia as a transcallosal misconnection syndrome. Schizophrenia Res 1998; 30: 111–114.

    CAS  Google Scholar 

  22. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    CAS  PubMed  Google Scholar 

  23. Marenco S, Weinberger DR . The developmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopat 2000; 12: 501–527.

    CAS  Google Scholar 

  24. Innocenti GM, Fiore L, Caminiti R . Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 1977; 4: 237–242.

    CAS  PubMed  Google Scholar 

  25. Innocenti GM . Growth and reshaping of axons in the establishment of visual callosal connections. Science 1981; 212: 824–827.

    CAS  PubMed  Google Scholar 

  26. Ivy GO, Killackey HP . The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J Comp Neurol 1981; 195: 367–389.

    CAS  PubMed  Google Scholar 

  27. Stanfield BB, O'Leary DDM, Fricks C . Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 1982; 298: 371–373.

    CAS  PubMed  Google Scholar 

  28. Berbel P, Innocenti GM . The development of the corpus callosum in cats: a light- and electron-microscopic study. J Comp Neurol 1988; 276: 132–156.

    CAS  PubMed  Google Scholar 

  29. Kennedy H, Bullier J, Dehay C . Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc Natl Acad Sci USA 1989; 86: 8093–8097.

    CAS  PubMed  Google Scholar 

  30. LaMantia A-S, Rakic P . Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 1990; 10: 2156–2175.

    CAS  PubMed  Google Scholar 

  31. Callaway EM, Katz LC . Emergence and refinement of clustered horizontal connections in cat striate cortex. J Neurosci 1990; 10: 1134–1153.

    CAS  PubMed  Google Scholar 

  32. Webster MJ, Ungerleider LG, Bachevalier J . Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 1991; 11: 1095–1116.

    CAS  PubMed  Google Scholar 

  33. Bressoud R, Innocenti GM . Typology, early differentiation and exuberant growth of a set of cortical axons. J Comp Neurol 1999; 406: 87–108.

    CAS  PubMed  Google Scholar 

  34. Innocenti GM . The development of projections from cerebral cortex. Prog Sens Physiol 1991; 12: 65–114.

    Google Scholar 

  35. Cragg BG . The development of synapses in the visual system of the cat. J Comp Neurol 1975; 160: 147–166.

    CAS  PubMed  Google Scholar 

  36. Huttenlocher PR . Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 1979; 163: 195–205.

    CAS  PubMed  Google Scholar 

  37. Huttenlocher PR, De Courten C, Garey LJ, Van der Loos H . Synaptogenesis in human visual cortex—evidence for synapse elimination during normal development. Neurosci Lett 1982; 33: 247–252.

    CAS  PubMed  Google Scholar 

  38. Bourgeois J-P, Rakic P . Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 1993; 13: 2801–2820.

    CAS  PubMed  Google Scholar 

  39. Aggoun-Zouaoui D, Kiper D, Innocenti GM . Growth of callosal terminal arbors in primary visual areas of the cat. Eur J Neurosci 1996; 8: 1132–1148.

    Google Scholar 

  40. Woo T-U, Pucak ML, Kye CH, Matus CV, Lewis DA . Peribuberal refinement of the intrinsic and associational circuitry in the monkey prefrontal cortex. Neuroscience 1997; 80: 1149–1158.

    CAS  PubMed  Google Scholar 

  41. Parnas J, Carter JW . High-risk studies and developmental hypothesis. In: Häfner H, Resch F (eds). Risk and Protective Factors in Schizophrenia: Towards a Conceptual Disease Model. Springer-Verlag: Berlin, 2001.

    Google Scholar 

  42. Galuske RAW, Schlote W, Singer W . Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 2000; 289: 1946–1949.

    CAS  PubMed  Google Scholar 

  43. Pakkenberg B . Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 1993; 34: 768–772.

    CAS  PubMed  Google Scholar 

  44. Selemon LD, Rajkowska G, Goldman-Rakic PS . Abnormally high neuronal density in the schizophrenic cortex: a morphometric analysis of prefrontal areas 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–818.

    CAS  PubMed  Google Scholar 

  45. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Ps 1998; 65: 446–453.

    CAS  Google Scholar 

  46. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    CAS  PubMed  Google Scholar 

  47. Ong WY, Garey LJ . Ultrastructural features of biopsed temporopolar cortex (area 38) in a case of schizophrenia. Schizophrenia Res 1993; 10: 15–27.

    CAS  Google Scholar 

  48. Glantz LA, Lewis DA . Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54: 943–952.

    CAS  PubMed  Google Scholar 

  49. Karson CN, Mrak RE, Schluterman KO, Sturner WO Sheng JG, Griffin WST . Alterations in synaptic protein and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Mol Psychiatry 1999; 4: 39–45.

    CAS  PubMed  Google Scholar 

  50. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ . Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.

    CAS  PubMed  Google Scholar 

  51. Glantz LA, Austin MC, Lewis DA . Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2000; 48: 389–397.

    CAS  PubMed  Google Scholar 

  52. Miormics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Google Scholar 

  53. Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophrenia Res 2001; 49: 1–52.

    CAS  Google Scholar 

  54. Weinberger DR, Berman KF, Suddath R, Torrey EF . Evidence of dysfunction of a prefrontal–limbic network in schizophrenia: a magnetic resonance imaging and regional blood flow study of discordant monozygotic twins. Am J Psychiatry 1992; 149: 890–897.

    CAS  PubMed  Google Scholar 

  55. Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic naïve patients. Lancet 1997; 349: 1730–1734.

    CAS  PubMed  Google Scholar 

  56. Tsai G, Passani La, Slusher BS, Carter R, Baer L, Kleinman JE et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52: 829–836.

    CAS  PubMed  Google Scholar 

  57. Melone M, Vitellaro-Zuccarello L, Vallejo-Illarramendi A, Pérez-Samartin A, Matute C, Cozzi A, Pellegrini-Giampietro DE et al. The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Mol Psychiatry 2001; 6: 380–386.

    CAS  PubMed  Google Scholar 

  58. Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D et al. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 2000; 12: 3721–3728.

    CAS  PubMed  Google Scholar 

  59. Hyde TM, Ziegler JC, Weinberger DR . Psychiatric disturbance in metachromatic leukodystrophy: insight into the neuronbiology of psychosis. Arch Neurol 1992; 49: 401–406.

    CAS  PubMed  Google Scholar 

  60. Friston KJ . Theoretical neurobiology and schizophrenia. Br Medical Bull 1996; 52: 644–655.

    CAS  Google Scholar 

  61. Hoffman RE . Neural network simulations, cortical connectivity, and schizophrenic psychosis. MD Computing 1997; 14: 200–208.

    CAS  PubMed  Google Scholar 

  62. Pakkenberg B . Pronounced reduction of nerve cell number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990; 47: 1023–1028.

    CAS  PubMed  Google Scholar 

  63. Popken GJ, Bunney WE, Potkin SG, Jones EG . Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 2000; 97: 9276–9280.

    CAS  PubMed  Google Scholar 

  64. Innocenti GM, Frost DO, Illes J . Maturation of visual callosal connections in visually deprived kittens: a challenging critical period. J Neurosci 1985; 5: 255–267.

    CAS  PubMed  Google Scholar 

  65. Olavarria J . The effect of visual deprivation on the number of callosal cells in the cat is less pronounced in extrastriate cortex than in the 17/18 border region. Neurosci Lett 1995; 195:147–150.

    CAS  PubMed  Google Scholar 

  66. McCasland JS, Bernardo KL, Probst KL, Woolsey TA . Cortical local circuit axons do not mature after early deafferentation. Proc Natl Acad Sci USA 1992; 89: 1832–1836.

    CAS  PubMed  Google Scholar 

  67. Zufferey PD, Jin F, Nakamura H, Tettoni L, Innocenti GM . The role of pattern vision in the development of cortico-cortical connections. Eur J Neurosci 1999; 11: 2669–2688.

    CAS  PubMed  Google Scholar 

  68. Rajkowska G, Selemon LD, Goldman-Rakic PS . Neuronal and glial somal size in the prefrontal cortex. A postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.

    CAS  PubMed  Google Scholar 

  69. Pierri JN, Volk CLE, Sunyaung Auh MS, Sampson A, Lewis DA . Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 2000; 158: 466–473.

    Google Scholar 

  70. Clarke S, Kraftsik R, Van der Loos H, Innocenti GM . Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol 1989; 280: 213–230.

    CAS  PubMed  Google Scholar 

  71. Kennedy H, Meissirel C, Dehay C . Callosal pathways and their compliancy to general rules governing the organization of corticocortical connectivity. In: Dreher B, Robinson S (eds). Vision and Visual Dysfunction, Vol 3: Neuroanatomy of the Visual Pathways and their Development. Macmillan: London, 1991, pp 324–359.

    Google Scholar 

  72. Lewis DA, Gonzales-Burgos G . Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309–317.

    CAS  PubMed  Google Scholar 

  73. David AS . Divided visual field studies in schizophrenia. In: Crawford J, Parker D (eds). Developments in Clinical and Experimental Neuropsychology. Plenum Press: New York, 1989, pp 113–126.

    Google Scholar 

  74. Coger RW, Serafetinides EA . Schizophrenia, corpus callosum, and interhemispheric communication: a review. Psychiatry Res 1990; 34: 163–184.

    CAS  PubMed  Google Scholar 

  75. Woodruff PWR, McManus IC, David AS . Meta-analysis of corpus callosum size in schizophrenia. J Neurol Neurosur Ps 1995; 58: 457–461.

    CAS  Google Scholar 

  76. Hoff AL, Neal C, Kushner M, DeLisi LE . Gender differences in corpus callosum size in first-episode schizophrenics. Biol Psychiatry 1994; 35: 913–919.

    CAS  PubMed  Google Scholar 

  77. Colombo C, Bonfanti A, Scarone S . Anatomical characteristics of the corpus callosum and clinical corelates in schizophrenia. Eur Arch Psychiatry Clin N 1994; 243: 244–248.

    CAS  Google Scholar 

  78. Wright IC, McGuire PK, Poline J-B, Trevere JM, Murray RM, Frith CD et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage 1995; 2: 244–252.

    CAS  PubMed  Google Scholar 

  79. Hendren RL, Hodde-Vargas J, Yeo RA, Vargas LA, Brooks WM, Ford C . Neuropsychophysiological study of children at risk for schizophrenia: a preliminary report. J Am Acad Child Psychiatry 1995; 34: 1284–1291.

    CAS  Google Scholar 

  80. Woodruff PWR, Phillips ML, Rushe T, Wright IC, Murray RM, David AS . Corpus callosum size and inter-hemispheric function in schizophrenia. Schizophr Res 1997; 23: 189–196.

    CAS  PubMed  Google Scholar 

  81. Tibbo P, Nopoulos P, Arndt S, Andreasen NC . Corpus callosum shape and size in male patients with schizophrenia. Biol Psychiatry 1998; 44: 405–412.

    CAS  PubMed  Google Scholar 

  82. DeQuardo JR, Keshavan MS, Bookstein FL, Bagwell WW, Green WDK, Sweeney JA et al. Landmark-based morphometric analysis of first-episode schizophrenia. Biol Psychiatry 1999; 45: 1321–1328.

    CAS  PubMed  Google Scholar 

  83. Highley JR, Esiri MM, McDonald B, Cortina-Borja M, Herron BM, Crow TJ . The size and fibre composition of the corpus callosum with respect to gender and schizophrenia: a post-mortem study. Brain 1999; 122: 99–110.

    PubMed  Google Scholar 

  84. Meisenzahl EM, Frodl T, Greiner J, Leinsinger G, Maag K-P, Heiss D et al. Corpus callosum size in schizophrenia—a magnetic resonance imaging analysis. Eur Arch Psychiatry Clin N 1999; 249: 305–312.

    CAS  Google Scholar 

  85. Scheller-Gilkey G, Lewine RRJ . Age at onset and sex differences in corpus callosum area in schizophrenia. Schizophr Res 1999; 40: 229–235.

    CAS  PubMed  Google Scholar 

  86. Sachdev PS, Brodaty H . Mid-sagittal anatomy in late-onset schizophrenia. Psychol Med 1999; 29: 963–970.

    CAS  PubMed  Google Scholar 

  87. Chua SE, Sharma T, Takei N, Murray RM, Woodruff PWR . A magnetic resonance imaging study of corpus callosum size in familial schizophrenic subjects, their relatives, and normal controls. Schizophr Res 2000; 41: 397–403.

    CAS  PubMed  Google Scholar 

  88. Downhill JE, Buchsbaum MS, Wei T, Spiegel-Cohen J, Hazlett EA, Haznedar MM et al. Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophr Res 2000; 42: 193–208.

    PubMed  Google Scholar 

  89. Foong J, Maier M, Clark CA, Barker GJ, Miller DH, Ron MA . Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosur Ps 2000; 68: 242–244.

    CAS  Google Scholar 

  90. Narr KL, Thompson PM, Sharma T, Moussai J, Cannestra AF, Toga AW . Mapping morphology of the corpus callosum in schizophrenia. Cereb Cortex 2000; 10: 40–49.

    CAS  PubMed  Google Scholar 

  91. Agartz I, Andersson JLR, Skasre S . Abnormal brain white matter in schizophrenia: a diffusor tensor imaging study. Neuroreport 2001; 12: 2251–2254.

    CAS  PubMed  Google Scholar 

  92. Foong J, Symms MR, Barker GJ, Maier M, Woermann FG, Miller DH, Ron MA . Neuropathological abnormalities in schizoprenia: evidence from magnetization transfer imaging. Brain 2001; 124: 882–892.

    CAS  PubMed  Google Scholar 

  93. Rossell SL, Shapleske J, Fukuda R, Woodruff PWR, Simmons A, David AS . Corpus callosum area and functioning in schizophrenic patients with auditory–verbal hallucinations. Schizophr Res 2001; 50: 9–17.

    CAS  PubMed  Google Scholar 

  94. Höppner J, Kunesch E, Grossmann A, Tolzin C-J, Schultz M, Schläfke D et al. Dysfunction of transcallosally mediated motor inhibition and callosal morphology in patients with schizophrenia. Acta Psychiat Scand 2001; 104: 227–235.

    PubMed  Google Scholar 

  95. Frodl T, Meisenzhal EM, Müller D, Greiner J, Juckel G, Leisinger G et al. Corpus callosum and P300 in schizophrenia. Schizophr Res 2001; 49: 107–120.

    CAS  PubMed  Google Scholar 

  96. Bishop KM, Wahlsten D . Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev 1997; 21: 581–601.

    CAS  PubMed  Google Scholar 

  97. Schenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    Google Scholar 

  98. De Lacoste MC, Kirkpatrick JB, Ross ED . Topography of the human corpus callosum. J Neuropat Exp Neur 1985; 44: 578–591.

    CAS  Google Scholar 

  99. Koppel H, Innocenti GM . Is there genuine exuberancy of callosal projections in development? A quantitative electro-microscopic study. Neurosci Lett 1983; 41: 33–40.

    CAS  PubMed  Google Scholar 

  100. Boroojerdi D, Töpper R, Foltys H, Meincke U . Transcallosal inhibition and motor conduction studies in patients with schizophrenia using transcranial magnetic stimulation. Br J Psychiatry 1999; 175: 375–379.

    CAS  PubMed  Google Scholar 

  101. Schwartz BD, Winstead DK, Walker WG . A corpus callosum deficit in sequential analysis by schizophrenics. Biol Psychiatry 1984; 19: 1667–1676.

    CAS  PubMed  Google Scholar 

  102. Gulmann NC, Widshiödtz G, Örbaek K . Alterations of interhemispheric conduction through the corpus callosum in chronic schizophrenia. Biol Psychiatry 1982; 17: 585–594.

    CAS  PubMed  Google Scholar 

  103. Luria AR . The Working Brain. Basic Books, Inc.: New York, 1973; p 398.

    Google Scholar 

  104. Innocenti GM, Manzoni T, Spidalieri G . Relevance of the callosal transfer in defining the peripheral reactivity of somesthesic cortical neurons. Arch Ital Biol 1973; 3: 187–221.

    Google Scholar 

  105. Picard N, Lepore F, Ptito M, Guillemot JP . Bilateral interaction in the second somatosensory area (SII) of the cat and contribution of the corpus callosum. Brain Res 1990; 17(536): 97–104.

    Google Scholar 

  106. Fabri M, Polonara G, Quattrini A, Salvolini U, Del Pesce M, Manzoni T . Role of the corpus callosum in the somatosensory activation of the ipsilateral cerebral cortex: an fMRI study of callosotomized patients. Eur J Neurosci 1999; 11: 3983–3994.

    CAS  PubMed  Google Scholar 

  107. Salamy A . Commissural transmission: maturational changes in humans. Science 1978; 200: 1409–1411.

    CAS  PubMed  Google Scholar 

  108. Engel AK, König P, Kreiter AK, Singer W . Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 1991; 252: 1177–1179.

    CAS  PubMed  Google Scholar 

  109. Nowak LG, Munk MHJ, Nelson JI, James AC, Bullier J . Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 1995; 74: 2379–2400.

    CAS  PubMed  Google Scholar 

  110. Munk MHJ, Nowak LG, Nelson JI, Bullier J . Structural basis of cortical synchronization. II. Effects of cortical lesions. J Neurophysiol 1995; 74: 2401–2414.

    CAS  PubMed  Google Scholar 

  111. Kiper DC, Knyazeva MG, Tettoni L, Innocenti GM . Visual stimulus dependent changes in inter-hemispheric EEG coherence. J Neurophysiol 1999; 82: 3082–3094.

    CAS  PubMed  Google Scholar 

  112. Knyazeva MG, Kiper DC, Vildavski VY, Desplands PA, Maeder-Ingvar M, Innocenti GM . Visual-stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol 1999; 82: 3095–3107.

    CAS  PubMed  Google Scholar 

  113. Merrin EL, Floyd TC, Fein G . EEG coherence in unmedicated schizophrenic patients. Biol Psychiatry 1989; 25: 60–66.

    CAS  PubMed  Google Scholar 

  114. Michelogiannis S, Paritsis N, Trikas P . EEG coherence during hemispheric activation in schizophrenics. Eur Arch Psy Clin N 1991; 241: 31–34.

    CAS  Google Scholar 

  115. Nagase Y, Okubo Y, Matsuura M, Kojima T, Toru M . EEG coherence in unmedicated schizophrenic patients: topographical study of predominantly never medicated cases. Biol Psychiatry 1992; 32: 1028–1034.

    CAS  PubMed  Google Scholar 

  116. Morrison-Stewart SL, Velikonja D, Corning WC, Williamson P . Aberrant interhemispheric alpha coherence on electroencephalography in schizophrenic patients during activation tasks. Psychol Med 1996; 26: 605–612.

    CAS  PubMed  Google Scholar 

  117. Merrin EL, Floyd T . Negative symptoms and EEG alpha in schizophrenia: a replication. Schizophr Res 1996; 19: 151–161.

    CAS  PubMed  Google Scholar 

  118. Mann K, Maier W, Franke P, Röschke J, Gänsicke M . Intra- and interhemispheric electroencephalogram coherence in siblings discordant for schizophrenia and healthy volunteers. Biol Psychiatry 1997; 42: 655–663.

    CAS  PubMed  Google Scholar 

  119. Norman RMG, Malla AK, Williamson PC, Morrison-Stewart SL, Helmes E, Cortese L . EEG coherence and syndromes in schizophrenia. Br J Psychiatry 1997; 170: 411–415.

    CAS  PubMed  Google Scholar 

  120. Pinkofsky HB, Struve FA, Meyer MA, Patrick G, Reeves RR . Decreased multi-band posterior interhemispheric coherence with a lipoma on the corpus callosum: a case report of a possible association. Clin Electroencephal 1997; 28: 155–159.

    CAS  Google Scholar 

  121. Tauscher J, Fischer P, Neumeister A, Rappelsberger P, Kasper S . Low frontal electroencephalographic coherence in neuroleptic-free schizophrenic patients. Biol Psychiat 1998; 44: 438–447.

    CAS  PubMed  Google Scholar 

  122. Wada Y, Nanbu Y, Jiang Z, Koshino Y, Hashimoto T . Interhemispheric EEG coherence in never-medicated patients with paranoid schizophrenia: analysis at rest and during photic stimulation. Clin Electroencephal 1998; 29: 170–176.

    CAS  Google Scholar 

  123. Wada Y, Nanbu Y, Kikuchi M, Koshino Y, Hashimoto T . Aberrant functional organization in schizophrenia: analysis of EEG coherence during rest and photic stimulation in drug-naive patients. Neuropsychobiol 1998; 38: 63–69.

    CAS  Google Scholar 

  124. Winterer G, Egan MF, Rädler T, Hyde T, Coppola R, Weinberger DR . An association between reduced interhemispheric EEG coherence in the temporal lobe and genetic risk for schizophrenia. Schizophr Res 2001; 49: 129–143.

    CAS  PubMed  Google Scholar 

  125. Beaumont JG, Dimond S . Brain disconnection and schizophrenia. Br J Psychiatry 1973; 123: 661–662.

    CAS  PubMed  Google Scholar 

  126. Mohr B, Pulvermüller F, Cohen R, Rockstroh B . Interhemispheric cooperation during word processing: evidence for callosal transfer dysfunction in schizophrenic patients. Schizophr Res 2000; 46: 231–239.

    CAS  PubMed  Google Scholar 

  127. Spivak B, Elimelech D, Ocring R, Mester R, Kotler M, Weizman A . Hemispheric function in disorganized type schizophrenia: performance on the quality extinction test. Eur Psychiatry 2000; 15: 402–406.

    CAS  PubMed  Google Scholar 

  128. Bellgrove MA, Bradshaw JL, Velakoulis D, Johnson KA, Rogers MA, Smith D et al. Bimanual coordination in chronic schizophrenia. Brain Cognition 2001; 45: 325–341.

    CAS  PubMed  Google Scholar 

  129. David AS . Stroop effects within and between the cerebral hemispheres: studies in normals and acallosals. Neuropsychologia 1992; 30: 161–175.

    CAS  PubMed  Google Scholar 

  130. David AS . Callosal transfer in schizophrenia: too much or too little? J Abnorm Psychol 1993; 102: 573–579.

    CAS  PubMed  Google Scholar 

  131. David AS . Severe psychiatric disturbance and abnormalities of the corpus callosum: review and case series. J Neurol Neurosurg Ps 1993; 56: 85–93.

    CAS  Google Scholar 

  132. Audenaert K, Lahorte P, Brans B, van Laere K, Goethals I, van Heeringen K et al. The classical stroop interference task as a prefrontal activation probe:a validation study using 99Tcm-ECD brain SPECT. Nucl Med Commun 2001; 22: 135–143.

    CAS  PubMed  Google Scholar 

  133. Phillips ML, Woodruff PWR, David AS . Stroop interference and facilitation in the cerebral hemispheres in schizophrenia. Schizophr Res 1996; 20: 57–68.

    CAS  PubMed  Google Scholar 

  134. David AS . Schizophrenia and the corpus callosum: developmental. Structural and functional relationships. Behav Brain Res 1994; 64: 203–211.

    CAS  PubMed  Google Scholar 

  135. Günther W, Petschs R, Steinberg R, Moser E, Streck P, Heller H et al. Brain disfunction during motor activation and corpus callosum alteration in schizophrenia measured by cerebral blood flow and magnetic resonance imaging. Biol Psychiatry 1991; 29: 535–555.

    PubMed  Google Scholar 

  136. Merrin EL, Floyd TC . Negative symptoms and EEG alpha activity in schizophrenic patients. Schizophr Res 1992; 8: 11–20.

    CAS  PubMed  Google Scholar 

  137. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 1988; 60: 121–130.

    CAS  PubMed  Google Scholar 

  138. Gray CM, König P, Engel AK, Singer W . Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989; 338: 334–337.

    CAS  PubMed  Google Scholar 

  139. Joliot M, Ribary U, Llinás R . Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 1994; 91: 11 748–11 751.

    Google Scholar 

  140. Singer W, Gray CM . Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995; 18: 555–586.

    CAS  PubMed  Google Scholar 

  141. Stransky E . Zur Auffassung gewisser Symptome der Dementia praecox. Neurolog Centralbl 1904; 23: 1074–1143.

    Google Scholar 

  142. Bleuler E . Dementia Preacox oder Gruppe der Schizophrenien. Frantz Deuticke: Leipzig und Wien, 1911, p 420.

    Google Scholar 

  143. Meehl PE . Schizotaxia, schizotypy, schizophrenia. Am Psychol 1962; 17: 827–838.

    Google Scholar 

  144. Kwoon JS, O'Donnell BF, Wallenstein GV, Greene RW, Hirayasu Y, Nestor PG et al. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 1999; 56: 1001–1005.

    Google Scholar 

  145. Green MF, Neuchterlein KH . Cortical oscillations and schizophrenia. Timing is of the essence. Arch Gen Psychiatry 1999; 56: 1007–1008.

    CAS  PubMed  Google Scholar 

  146. Haig AR, Gordon E, De Pascalis V, Meares RA, Bahramali H, Harris A . Gamma activity in schizophrenia: evidence of impaired network binding? Clin Neurophysiol 2000; 111: 1461–1468.

    CAS  PubMed  Google Scholar 

  147. Lee K-H, Williams LM, Haig A, Goldberg E, Gordon E . An integration of 40 Hz Gamma and phasic arousal: novelty and routinization processing in schizophrenia. Clin Neurophysiol 2001; 112: 1499–1507.

    CAS  PubMed  Google Scholar 

  148. Parnas J, Vianin P, Saebye D, Jansson L, Volmer Larsen A, Bovet P . Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiat Scand 2001; 103: 1–10.

    Google Scholar 

  149. Wright, IC, Rabe-Hesketh S, Woodruff P, David AS, Murray RM, Bullmore ET . Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25.

    CAS  PubMed  Google Scholar 

  150. Gazzaniga S, Ivry RB, Mangoun GR . Cognitive Neuroscience. Norton and Company: New York, 1998.

    Google Scholar 

  151. Petty RG . Structural asymmetries of the human brain and their disturbance in schizophrenia. Schizophr Bull 2000; 25: 121–139.

    Google Scholar 

  152. Crow TJ, Commentary on Annett, Yeo et al., Klar, Saugstadt and Orr: cerebral asymmetry language and psychosis—the case for a Homo sapiens-specific sex-linked gene for brain growth. Schizophr Res 1999; 39: 219–231.

    CAS  PubMed  Google Scholar 

  153. Crow TJ . Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Rev 2000; 31: 118–129.

    CAS  PubMed  Google Scholar 

  154. Annett M . The theory of an agnostic right shift gene in schizophrenia and autism. Schizophr Res 1999; 39: 177–182.

    CAS  PubMed  Google Scholar 

  155. Yeo RA, Gangestadt SW, Edgar C, Thoma R . The evolutionary genetic underpinning of schizophrenia: the developmental instability model. Schizophr Res 1999; 39: 197–206.

    CAS  PubMed  Google Scholar 

  156. Lee Y-J, Zhu Y-S, Shen M-F, Tong S-B, Thakor NV . The nonlinear dynamical analysis of the EEG in schizophrenia with temporal and spatial embedding dimension. J Med Eng Technol 2001; 25: 79–83.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Swedish Medical Research Council grant no. 12954. We are grateful to Carl Holmgren for providing useful advice on this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G M Innocenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenti, G., Ansermet, F. & Parnas, J. Schizophrenia, neurodevelopment and corpus callosum. Mol Psychiatry 8, 261–274 (2003). https://doi.org/10.1038/sj.mp.4001205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001205

Keywords

This article is cited by

Search

Quick links