Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation

Abstract

An important question arising from previous observations in vivo is whether glucocorticoids can directly influence neuronal survival in the hippocampus. To this end, a primary postnatal hippocampal culture system containing mature neurons and expressing both glucocorticoid (GR) and mineralocorticoid (MR) receptors was developed. Results show that the GR agonist dexamethasone (DEX) targets neurons (microtubule-associated protein 2-positive cells) for death through apoptosis. GR-mediated cell death was counteracted by the MR agonist aldosterone (ALDO). Antagonism of MR with spironolactone ([7α-(acetylthio)-3-oxo-17α-pregn-4-ene-21 carbolactone] (SPIRO)) causes a dose-dependent increase in neuronal apoptosis in the absence of DEX, indicating that nanomolar levels of corticosterone present in the culture medium, which are sufficient to activate MR, can mask the apoptotic response to DEX. Indeed, both SPIRO and another MR antagonist, oxprenoate potassium ((7α,17α)-17-hydroxy-3-oxo-7-propylpregn-4-ene-21-carboxylic acid, potassium salt (RU28318)), accentuated DEX-induced apoptosis. These results demonstrate that GRs can act directly to induce hippocampal neuronal death and that demonstration of their full apoptotic potency depends on abolition of survival-promoting actions mediated by MR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M . Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998; 19: 269–301.

    CAS  PubMed  Google Scholar 

  2. Gold PW, Chrousos GP . Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002; 7: 254–275.

    Article  CAS  PubMed  Google Scholar 

  3. Holsboer F . The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23: 477–501.

    Article  CAS  PubMed  Google Scholar 

  4. Reagan LP, McEwen BS . Controversies surrounding glucocorticoid-mediated cell death in the hippocampus. J Chem Neuroanat 1997; 13: 149–167.

    Article  CAS  PubMed  Google Scholar 

  5. Sapolsky RM . Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000; 57: 925–935.

    Article  CAS  PubMed  Google Scholar 

  6. Lupien SJ, Nair NP, Briere S, Maheu F, Tu MT, Lemay M et al. Increased cortisol levels and impaired cognition in human aging: implication for depression and dementia in later life. Rev Neurosci 1999; 10: 117–139.

    Article  CAS  PubMed  Google Scholar 

  7. Sheline YI . 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 2000; 48: 791–800.

    Article  CAS  PubMed  Google Scholar 

  8. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE . Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease. Biol Psychiatry 1999; 46: 1595–1602.

    Article  CAS  PubMed  Google Scholar 

  9. Schubert MI, Kalisch K, Sotiropoulos I, Catania C, Sousa N, Almeida OFX et al. In vivo MR assessment of hippocampal volume and neurochemical changes in rats with altered corticosteroid milieu. Proc Int Soc Mag Res Med 2004; 12: 1445.

    Google Scholar 

  10. Magarinos AM, McEwen BS . Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proc Natl Acad Sci USA 2000; 97: 11056–11061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sousa N, Paula-Barbosa MM, Almeida OFX . Ligand and subfield specificity of corticoid-induced neuronal loss in the rat hippocampal formation. Neuroscience 1999; 89: 1079–1087.

    Article  CAS  PubMed  Google Scholar 

  12. Sousa N, Almeida OFX . Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci 2002; 13: 59–84.

    Article  CAS  PubMed  Google Scholar 

  13. Almeida OFX, Condé GL, Crochemore C, Demeneix BA, Fischer D, Hassan AHS et al. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate. FASEB J 2000; 14: 779–790.

    Article  CAS  PubMed  Google Scholar 

  14. Hassan AHS, von Rosenstiel P, Patchev VK, Holsboer F, Almeida OFX . Exacerbation of apoptosis in the dentate gyrus of the aged rat by dexamethasone and the protective role of corticosterone. Exp Neurol 1996; 140: 43–52.

    Article  CAS  PubMed  Google Scholar 

  15. Fuchs E, Gould E . Mini-review: in vivo neurogenesis in the adult brain: regulation and functional implications. Eur J Neurosci 2000; 12: 2211–2214.

    Article  CAS  PubMed  Google Scholar 

  16. Reul JM, Gesing A, Droste S, Stec IS, Weber A, Bachmann C et al. The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. Eur J Pharmacol 2000; 405: 235–249.

    Article  CAS  PubMed  Google Scholar 

  17. de Kloet ER, Oitzl MS, Joels M . Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 1999; 22: 422–426.

    Article  CAS  PubMed  Google Scholar 

  18. Sloviter RS, Dean E, Neubort S . Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. J Comp Neurol 1993; 330: 324–336.

    Article  CAS  PubMed  Google Scholar 

  19. Sloviter RS, Sollas AL, Neubort S . Hippocampal dentate granule cell degeneration after adrenalectomy in the rat is not reversed by dexamethasone. Brain Res 1995; 682: 227–230.

    Article  CAS  PubMed  Google Scholar 

  20. Sousa N, Madeira MD, Paula-Barbosa MM . Corticosterone replacement restores normal morphological features to the hippocampal dendrites, axons and synapses of adrenalectomized rats. J Neurocytol 1999; 28: 541–558.

    Article  CAS  PubMed  Google Scholar 

  21. Hellbach S, Gartner P, Deicke J, Fischer D, Hassan AHS, Almeida OFX . Inherent glucocorticoid response potential of isolated hypothalamic neuroendocrine neurons. FASEB J 1998; 12: 199–207.

    Article  CAS  PubMed  Google Scholar 

  22. Liposits Z, Merchenthaler I, Wetsel WC, Reid JJ, Mellon PL, Weiner RI et al. Morphological characterization of immortalized hypothalamic neurons synthesizing luteinizing hormone-releasing hormone. Endocrinology 1991; 129: 1575–1583.

    Article  CAS  PubMed  Google Scholar 

  23. Gavrieli Y, Sherman Y, Ben-Sasson SA . Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992; 119: 493–501.

    Article  CAS  PubMed  Google Scholar 

  24. Beamen-Hall CM, Wainer BH, Eves E, Bohn MC . Expression of glucocorticoid and mineralocorticoid receptors in an immortalized hippocampal neuronal cell line. Brain Res 1996; 726: 141–152.

    Article  Google Scholar 

  25. Crochemore C, Michaelidis TM, Fischer D, Loeffler JP, Almeida OFX . Enhancement of p53 activity and inhibition of neural cell proliferation by glucocorticoid receptor activation. FASEB J 2002; 16: 761–770.

    Article  CAS  PubMed  Google Scholar 

  26. Lucassen PJ, Vollmann-Honsdorf GK, Gleisberg M, Czeh B, De Kloet ER, Fuchs E . Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci 2001; 14: 161–166.

    Article  CAS  PubMed  Google Scholar 

  27. Elliott EM, Mattson MP, Vanderklish P, Lynch G, Chang I, Sapolsky RM . Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo. J Neurochem 1993; 61: 57–67.

    Article  CAS  PubMed  Google Scholar 

  28. Behl C, Lezoualc'h F, Trapp T, Widmann M, Skutella T, Holsboer F . Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 1997; 138: 101–106.

    Article  CAS  PubMed  Google Scholar 

  29. Lu J, Sousa N, Almeida OFX . Paracrine regulation of proliferation in hippocampal and granule cells. 34th Annual Meeting of the Society of Neuroscience 2004, San Diego, CA (abstract 382.15).

    Google Scholar 

  30. Rosenfeld P, van Eekelen JA, Levine S, de Kloet ER . Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol 1993; 13: 295–319.

    Article  CAS  PubMed  Google Scholar 

  31. Vázquez DM . Stress and the developing limbic-hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 1998; 23: 663–700.

    Article  PubMed  Google Scholar 

  32. Pearce D, Naray-Fejes-Toth A, Fejes-Toth G . Determinants of subnuclear organization of mineralocorticoid receptor characterized through analysis of wild type and mutant receptors. J Biol Chem 2002; 277: 1451–1456.

    Article  CAS  PubMed  Google Scholar 

  33. Coirini H, Magarinos AM, De Nicola AF, Rainbow TC, McEwen BS . Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markers in vitro. Brain Res 1985; 361: 212–216.

    Article  CAS  PubMed  Google Scholar 

  34. Kim PJ, Cole MA, Kalman BA, Spencer RL . Evaluation of RU28318 and RU40555 as selective mineralocorticoid receptor and glucocorticoid receptor antagonists, respectively: receptor measures and functional studies. J Steroid Biochem Mol Biol 1998; 67: 213–222.

    Article  CAS  PubMed  Google Scholar 

  35. Alzamora R, Michea L, Marusic ET . Role of 11beta-hydroxysteroid dehydrogenase in nongenomic aldosterone effects in human arteries. Hypertension 2000; 35: 1099–1104.

    Article  CAS  PubMed  Google Scholar 

  36. Haynes LE, Griffiths MR, Hyde RE, Barber DJ, Mitchell IJ . Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: implications for mood disorders. Neuroscience 2001; 104: 57–69.

    Article  CAS  PubMed  Google Scholar 

  37. Haynes LE, Lendon CL, Barber DJ, Mitchell IJ . 17-Beta-oestradiol attenuates dexamethasone-induced lethal and sublethal neuronal damage in the striatum and hippocampus. Neuroscience 2003; 120: 799–806.

    Article  CAS  PubMed  Google Scholar 

  38. Lu J, Goula D, Sousa N, Almeida OFX . Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors. Neuroscience 2003; 121: 123–131.

    Article  CAS  PubMed  Google Scholar 

  39. Sousa N, Madeira MD, Paula-Barbosa MM . Structural alterations of the hippocampal formation of adrenalectomized rats: an unbiased stereological study. J Neurocytol 1997; 26: 423–438.

    Article  CAS  PubMed  Google Scholar 

  40. Jaarsma D, Postema F, Korf J . Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: a silver impregnation study. Hippocampus 1992; 2: 143–150.

    Article  CAS  PubMed  Google Scholar 

  41. Hu Z, Yuri K, Ozawa H, Lu H, Kawata M . The in vivo time course for elimination of adrenalectomy-induced apoptotic profiles from the granule cell layer of the rat hippocampus. J Neurosci 1997; 17: 3981–3989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Welberg LA, Seckl JR . Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001; 13: 113–128.

    Article  CAS  PubMed  Google Scholar 

  43. Sousa N, Almeida OFX, Holsboer F, Paula-Barbosa MM, Madeira MD . Maintenance of hippocampal cell numbers in young and aged rats submitted to chronic unpredictable stress. Comparison with the effects of corticosterone treatment. Stress 1998; 2: 237.

    Article  CAS  PubMed  Google Scholar 

  44. Cameron HA, Woolley CS, Gould E . Adrenal steroid receptor immunoreactivity in cells born in the adult rat dentate gyrus. Brain Res 1993; 611: 342–346.

    Article  CAS  PubMed  Google Scholar 

  45. Reul JM, Gesing A, Droste S, Stec IS, Weber A, Bachmann C et al. The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. Eur J Pharmacol 2000; 405: 235–249.

    Article  CAS  PubMed  Google Scholar 

  46. Woolley CS, Gould E, Sakai RR, Spencer RL, McEwen BS . Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Res 1991; 554: 312–315.

    Article  CAS  PubMed  Google Scholar 

  47. Hornsby CD, Grootendorst J, de Kloet ER . Dexamethasone does not prevent seven-day ADX-induced apoptosis in the dentate gyrus of the rat hippocampus. Stress 1996; 1: 51–64.

    Article  CAS  PubMed  Google Scholar 

  48. Nirde P, Terouanne B, Gallais N, Sultan C, Auzou G . Antimineralocorticoid 11beta-substituted spirolactones exhibit androgen receptor agonistic activity: a structure function study. Mol Pharmacol 2001; 59: 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  49. Obradovic D, Tirard M, Nemethy Z, Hirsch O, Gronemeyer H, Almeida OFX . DAXX, FLASH, and FAF-1 modulate mineralocorticoid and glucocorticoid receptor-mediated transcription in hippocampal cells—toward a basis for the opposite actions elicited by two nuclear receptors? Mol Pharmacol 2004; 65: 761–769.

    Article  CAS  PubMed  Google Scholar 

  50. Tirard M, Jasbinsek J, Almeida OFX, Michaelidis TM . The manifold actions of the protein inhibitor of activated STAT proteins on the transcriptional activity of mineralocorticoid and glucocorticoid receptors in neural cells. J Mol Endocrinol 2004; 32: 825–841.

    Article  CAS  PubMed  Google Scholar 

  51. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM . Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000; 97: 253–266.

    Article  CAS  PubMed  Google Scholar 

  52. Sapolsky RM, Meaney MJ . Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res 1986; 396: 64–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rosa Buric, Julia Deicke and Dieter Fischer for technical assistance. CC, JL, and YW were supported by fellowships from the Max Planck Society. The work was partly supported by the German Academic Exchange Service/Magyar Ösztöndij Bizottság (DAAD 323-PPP Ungarn), Acções Integradas Luso-Alemãs (DAAD-CRUP-ICCTI 314/Al-p-dr) and the European Commission (QLG3-CT-2000-00844).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O F X Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crochemore, C., Lu, J., Wu, Y. et al. Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation. Mol Psychiatry 10, 790–798 (2005). https://doi.org/10.1038/sj.mp.4001679

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001679

Keywords

This article is cited by

Search

Quick links