Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Melanoma cell migration to type IV collagen requires activation of NF-κB

Abstract

Chemotaxis is the consequence of environmental factors engaging their receptors to initiate signaling cascades. However, the biochemical mechanisms controlling this phenomenon are not clear. We employed an in vitro modified Boyden 48-well chemotaxis migration system to characterize the role of signal transducers in type IV collagen (CIV) induced A2058 human melanoma cell migration. Using specific pharmacological inhibitors and a series of dominant-negative and constitutively active signaling proteins, we show that Ras and Rac GTPases, PI-3K, and PKC participate in cell migration mediated by β1 integrins. Collagen also induces a time- dependent degradation of IκB-α and an increase in nuclear translocation of NF-κB which is dependent on PKC pathway. More importantly, collagen-stimulated melanoma cell migration directly correlated with an increase in NF-κB transactivation. Furthermore, CIV induced an increase in β1 integrin mRNA levels. Specific NF-κB inhibitors Helenalin and SN-50 inhibited melanoma cell migration to collagen, indicating a novel requirement for NF-κB transactivation in cell chemotaxis mediated by β1 integrin signals. These results describe signal transduction events that are initiated by type IV collagen through β1 integrins and demonstrate an important role for NF-κB in regulating melanoma chemotaxis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anrather J, Csizmadia V, Soares MP and Winkler H . (1999). J. Biol. Chem., 274, 13 594–13 603.

  • Aspenström P . (1999). Exp. Cell Res., 246, 20–25.

  • Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E and Liotta LA . (1990). J. Cell Biol., 110, 1427–1438.

  • Benoliel AM, Kahn-Peries B, Imbert J and Verrando P . (1997). J. Cell Sci., 110, 2089–2097.

  • Boukerche H, Baril P, Tabone E, Berard F, Sanhadji K, Balme B, Wolf F, Perrot H and Thomas L . (2000). Cancer Res., 60, 5848–5856.

  • Burow ME, Weldon CB, Melnik LI, Duong BN, Collins-Burow BM, Beckman BS and McLachlan JA (2000). Biochem. Biophys. Res. Commun., 271, 342–345.

  • Chant J and Stowers L . (1995). Cell, 81, 1–4.

  • Chomczynski P and Sacchi N . (1987). Anal. Biochem., 162, 156–159.

  • Condeelis J . (1993). Annu. Rev. Cell Biol., 9, 411–444.

  • Denhardt DT . (1996). Biochem. J., 318, 729–747.

  • Feig LA . (1999). Nat. Cell Biol., 1, E25–E27.

  • Giancotti FG and Ruoslahti E . (1999). Science, 285, 1028–1032.

  • Harvath L, Falk W and Leonard EJ . (1980). J. Immunol. Methods, 37, 39–45.

  • Hodgson L and Dong C . (2001). Am. J. Physiol., 281, C106–C113.

  • Karin M . (1994). Curr. Opin. Cell Biol., 6, 415–424.

  • Keely PJ, Parise LV and Juliano R . (1998). Trends Cell Biol., 8, 101–106.

  • Keely PJ, Westwick JK, Whitehead IP, Der CJ and Parise LV . (1997). Nature, 390, 632–636.

  • Khoshnan A, Bae D, Tindell CA and Nel AE . (2000). J. Immunol., 165, 6933–6940.

  • Kjøller L and Hall A . (1999). Exp. Cell Res., 253, 166–179.

  • Leavesley DI, Schwartz MA, Rosenfeld M and Cheresh DA . (1993). J. Cell Biol., 121, 163–170.

  • Lester BR and McCarthy JB . (1992). Cancer Metastasis Rev., 11, 31–44.

  • Lin YZ, Yao SY, Veach RA, Torgerson TR and Hawiger J . (1995). J. Biol. Chem., 270, 14 255–14 258.

  • Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK and Schiffmann E . (1986). Proc. Natl. Acad. Sci. USA, 83, 3302–3306.

  • Lu C and Kerbel RS . (1993). J. Cell Biol., 120, 1281–1288.

  • Lyss G, Knorre A, Schmidt TJ, Pahl HL and Merfort I . (1998). J. Biol. Chem., 273, 33 508–33 516.

  • Lyss G, Schmidt TJ, Merfort I and Pahl HL . (1997). Biol. Chem., 378, 951–961.

  • Machesky LM and Hall A . (1997). J. Cell Biol., 138, 913–926.

  • Meredith Jr JE, Winitz S, Lewis JM, Hess S, Ren XD, Renshaw MW and Schwartz MA . (1996). Endocr. Rev., 17, 207–220.

  • Minden A, Lin A, Claret FX, Abo A and Karin M . (1995). Cell, 81, 1147–1157.

  • Nobes CD and Hall A . (1995). Cell, 81, 53–62.

  • Palmantier R, George MD, Akiyama SK, Wolber FM, Olden K and Roberts JD . (2001). Cancer Res., 61, 2445–2452.

  • Paolucci L, Sinnett-Smith J and Rozengurt E . (2000). Am. J. Physiol., 278, C33–C39.

  • Parsons JT, Martin KH, Slack JK, Taylor JM and Weed SA . (2000). Oncogene, 19, 5606–5613.

  • Pasco S, Han J, Gillery P, Bellon G, Maquart FX, Borel JP, Kefalides NA and Monboisse JC . (2000). Cancer Res., 60, 467–473.

  • Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R and Lacal JC . (1997). Genes Dev., 11, 463–475.

  • Powis G, Gallegos A, Abraham RT, Ashendel CL, Zalkow LH, Grindey GB and Bonjouklian R . (1994). Cancer Chemother. Pharmacol., 34, 344–350.

  • Price LS, Leng J, Schwartz MA and Bokoch GM . (1998). Mol. Biol. Cell, 9, 1863–1871.

  • Renshaw MW, Toksoz D and Schwartz MA . (1996). J. Biol. Chem., 271, 21691–21694.

  • Ridley AJ and Hall A . (1992). Cell, 70, 389–399.

  • Rong R, He Q, Liu Y, Sheikh MS and Huang Y . (2002). Oncogene, 21, 1062–1070.

  • Salazar EP and Rozengurt E . (2001). J. Biol. Chem., 276, 17788–17795.

  • Sarner S, Kozma R, Ahmed S and Lim L . (2000). Mol. Cell Biol., 20, 158–172.

  • Savarese DMF, Russell JT, Fatatis A and Liotta LA . (1992). J. Biol. Chem., 267, 21928–21935.

  • Schaller MD and Parsons JT . (1994). Curr. Opin. Cell Biol., 6, 705–710.

  • Schnaper HW and Kleinman HK . (1993). Pediatr. Nephrol., 7, 96–104.

  • Schreiber E, Matthias P, Muller MM and Schaffner W . (1989). Nucl. Acids Res., 17, 6419–6420.

  • Schwartz MA and Ingber DE . (1994). Mol. Biol. Cell, 5, 389–393.

  • Schwartz MA, Schaller MD and Ginsberg MH . (1995). Annu. Rev. Cell Dev. Biol., 11, 549–599.

  • Stossel TP . (1993). Science, 260, 1086–1094.

  • Stracke ML, Murata J, Aznavoorian S and Liotta LA . (1994). In vivo 8, 49–58.

  • Tapon N and Hall A . (1997). Curr. Opin. Cell Biol., 9, 86–92.

  • Trushin SA, Pennington KN, Algeciras-Schimnich A and Paya CV . (1999). J. Biol. Chem., 274, 22 923–22 931.

  • Van Aelst L and D'Souza-Schorey C . (1997). Genes Dev., 11, 2295–2322.

  • Yebra M, Filardo EJ, Bayna EM, Kawahara E, Becker JC and Cheresh DA . (1995). Mol. Biol. Cell, 6, 841–850.

  • Zigmond SH . (1996). Curr. Opin. Cell Biol., 8, 66–73.

Download references

Acknowledgements

The authors thank Dr MA Schwartz (The Scripps Research Institute), Dr K Calame (Columbia University), Dr A August, Dr P Correll, and Dr JM Tarbell (Penn State University) for their generous gifts of cDNA constructs and pertinent reagents. The authors also thank Dr A August for his critical reading, helpful comments and discussions. Technical assistance of Eileen S Lee, Julie A Cook (Penn State University), and Elaine L Kunze (Flowcytometry facility, Penn State University) are also appreciated. This work was supported by NIH-CA76434 (CD), and NIH-AI46261 (AJH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgson, L., Henderson, A. & Dong, C. Melanoma cell migration to type IV collagen requires activation of NF-κB. Oncogene 22, 98–108 (2003). https://doi.org/10.1038/sj.onc.1206059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206059

Keywords

This article is cited by

Search

Quick links