Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA

Abstract

The cancer-prone and premature aging disease Werner syndrome is due to loss of WRN gene function. Cells lacking WRN demonstrate genomic instability, including telomeric abnormalities and undergo premature senescence, suggesting defects in telomere metabolism. This notion is strongly supported by our finding of physical and functional interactions between WRN and TRF2, a telomeric repeat binding factor essential for proper telomeric structure. TRF2 binds to DNA substrates containing telomeric repeats and facilitates their degradation specifically by WRN exonuclease activity. WRN and TRF2 also interact directly in the absence of DNA. These results suggest that TRF2 recruits WRN for accurate processing of telomeric structures in vivo. Thus, our findings link problems in telomere maintenance to both carcinogenesis and specific features of aging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ancelin K, Brunori M, Bauwens S, Koering C-E, Brun C, Ricoul M, Pommier J-P, Sabatier L and Gilson E . (2002). Mol. Cell. Biol., 22, 3474–3487.

  • Bianchi A, Smith S, Chong L, Elias P and de Lange T . (1997). EMBO J., 16, 1785–1794.

  • Bianchi A, Stansel RM, Fairall L, Griffith JD, Rhodes D and de Lange T . (1999). EMBO J., 18, 5735–5744.

  • Broccoli D, Smogorzewska A, Chong L and de Lange T . (1997). Nat. Genet., 17, 231–235.

  • Brosh RM, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A and Bohr VA . (1999). J. Biol. Chem., 274, 18341–18350.

  • Chakraverty RK and Hickson ID . (1999). Bioessays, 21, 286–294.

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID and West SC . (2000). EMBO Rep., 1, 80–84.

  • de Lange T . (2002). Oncogene, 21, 532–540.

  • Fukuchi K, Martin GM and Monnat RJ . (1989). Proc. Natl. Acad. Sci. USA, 86, 5893–5897.

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H and de Lange T . (1999). Cell, 97, 503–514.

  • Hemann MT, Strong MA, Hao L-Y and Greider CW . (2001). Cell, 107, 67–77.

  • Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC and Guarente L . (2001). EMBO J., 20, 905–913.

  • Kamath-Loeb AS, Johannson E, Burgers PMJ and Loeb LA . (2000). Proc. Natl. Acad. Sci. USA, 97, 4603–4608.

  • Karlseder J, Smogorzewska A and de Lange T . (2002). Science, 295, 2446–2449.

  • Kim S-H, Kaminker P and Campisi J . (2002). Oncogene, 21, 503–511.

  • Lebel M, Spillare EA, Harris CA and Leder P . (1999). J. Biol. Chem., 274, 37795–37799.

  • Lundblad V . (2002). Oncogene, 21, 522–531.

  • Machwe A, Xiao L, Theodore S and Orren DK . (2002). J. Biol. Chem., 277, 4492–4504.

  • Martin GM, Sprague CR and Epstein CJ . (1970). Lab. Invest., 23, 86–92.

  • Maser RS and DePinho R . (2002). Science, 297, 565–569.

  • Opresko PL, von Kobbe C, Laine J-P, Harrigan J, Hickson ID and Bohr VA . (2002). J. Biol. Chem., 277, 41110–41119.

  • Orren DK, Brosh RM, Nehlin JO, Machwe A, Gray MD and Bohr VA . (1999). Nucleic Acids Res., 27, 3557–3566.

  • Orren DK, Theodore S and Machwe A . (2002). Biochemistry, 41, 13483–13488.

  • Oshima J . (2000). Bioessays, 22, 894–901.

  • Poot M, Hoehn H, Runger TM and Martin GM . (1992). Exp. Cell Res., 202, 267–273.

  • Schulz VP, Zakian VA, Ogburn CE, McKay J, Jarzebowicz AA, Edland SD and Martin GM . (1996). Hum. Genet., 97, 750–754.

  • Shay JW and Wright WE . (2001). Rad. Res., 155, 188–193.

  • Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G and de Lange T . (2000). Mol. Cell Biol., 20, 1659–1668.

  • Stansel RM, de Lange T and Griffith JD . (2001). EMBO J., 20, 5532–5540.

  • Tahara H, Tokutake Y, Maeda S, Kataoka H, Watanabe T, Satoh M, Matsumoto T, Sugawara M, Ide T, Goto M, Furuichi Y and Sugimoto M . (1997). Oncogene, 15, 1911–1920.

  • Van Steensel B and de Lange T . (1997). Nature, 385, 740–743.

  • Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D, Faragher RGA and Kipling D . (2000). Nat. Genet., 24, 16–17.

Download references

Acknowledgements

We thank Titia de Lange for providing constructs for overproduction of TRF1 and TRF2 and for helpful comments. This work was supported in part by Grant NS-008900 from the Ellison Medical Foundation to DKO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K Orren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machwe, A., Xiao, L. & Orren, D. TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23, 149–156 (2004). https://doi.org/10.1038/sj.onc.1206906

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206906

Keywords

This article is cited by

Search

Quick links