Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition

Abstract

Several signalling pathways contribute to the regulation of epithelial to mesenchymal transition (EMT), either during developmentally regulated processes or in cancer progression and metastasis. Induction of EMT in fully polarized mouse mammary epithelial cells (EpH4) by an inducible c-fos estrogen receptor (FosER) oncoprotein involves loss of E-cadherin expression, nuclear translocation of β-catenin, and autocrine production of TGFβ. Reporter assays demonstrate that both β-catenin/LEF–TCF- and TGFβ–Smad-dependent signalling activities are upregulated, probably coregulating mesenchymal-specific gene expression during EMT. Stable expression of E-cadherin in mesenchymal FosER cells decreased β-catenin activity and reduced cell proliferation. However, these cells still exhibited a defect in epithelial polarization and expressed E-cadherin/β-catenin complexes in the entire plasma membrane. On the other hand, inhibition of TGFβ–Smad signalling in mesenchymal FosER cells induced flat, cobblestone-like clusters of cells, which relocalized β-catenin to the plasma membrane but still lacked detectable E-cadherin. Interestingly, inhibition of TGFβ signalling in the E-cadherin-expressing mesenchymal FosER cells caused their reversion to a polarized epithelial phenotype, in which E-cadherin, β-catenin, and ZO-1 were localized at their correct lateral plasma membrane domains. These results demonstrate that loss of E-cadherin can contribute to increased LEF/TCF-β-catenin signalling, which in turn cooperates with autocrine TGFβ signalling to maintain an undifferentiated mesenchymal phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akhurst RJ and Derynck R . (2001). Trends Cell Biol., 11, S44–S51.

  • Attisano L and Wrana JL . (2002). Science, 296, 1646–1647.

  • Barker N and Clevers H . (2001). Trends Mol. Med., 7, 535–537.

  • Bienz M and Clevers H . (2000). Cell, 103, 311–320.

  • Birchmeier C, Birchmeier W and Brand-Saberi B . (1996). Acta Anat., 156, 217–226.

  • Brabletz T, Jung A, Dag S, Hlubek F and Kirchner T . (1999). Am. J. Pathol., 155, 1033–1038.

  • Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R and Kirchner T . (2001). Proc. Natl. Acad. Sci. USA, 98, 10356–10361.

  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P and Matrisian LM . (1999). Oncogene, 18, 2883–2891.

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S and Gauthier JM . (1998). EMBO J., 17, 3091–3100.

  • Derynck R, Akhurst RJ and Balmain A . (2001). Nat. Genet., 29, 117–129.

  • Duband JL, Monier F, Delanne and Newgreen D . (1995). Acta Anat., 154, 63–78.

  • Eger A and Foisner R . (2000). Protoplasma, 211, 125–133.

  • Eger A, Stockinger A, Schaffhauser B, Beug H and Foisner R . (2000). J. Cell Biol., 148, 173–188.

  • Gat U, DasGupta R, Degenstein L and Fuchs E . (1998). Cell, 95, 605–614.

  • Germain S, Howell M, Esslemont GM and Hill CS . (2000). Genes Dev., 14, 435–451.

  • Gold LI . (1999). Crit. Rev. Oncogen., 10, 303–360.

  • Gotzmann J, Huber H, Thallinger C, Wolschek M, Jansen B, Schulte-Hermann R, Beug H and Mikulits W . (2002). J. Cell Sci., 115, 1189–1202.

  • Gradl D, Kuhl M and Wedlich D . (1999). Mol. Cell. Biol., 19, 5576–5587.

  • Gumbiner BM . (2000). J. Cell Biol., 148, 399–404.

  • Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M and Taketo MM . (1999). EMBO J., 18, 5931–5942.

  • Iavarone A and Massague J . (1997). Nature, 387, 417–422.

  • Janda E, Lehmann K, Jechlinger M, Killisch I, Downward J, Beug H and Grünert S . (2002). J. Cell Biol., 156, 299–313.

  • Jonk LJ, Itoh S, Heldin CH, ten Dijke P and Kruijer W . (1998). J Biol. Chem., 273, 21145–21152.

  • Kirchner T and Brabletz T . (2000). Am. J. Pathol., 157, 1113–1121.

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B and Clevers H . (1997). Science, 275, 1784–1787.

  • Labbe E, Letamendia A and Attisano L . (2000). Proc. Natl. Acad. Sci. USA, 97, 8358–8363.

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H and Downward J . (2000). Genes Dev., 14, 2610–2622.

  • Letamendia A, Labbe E and Attisano L . (2001). J. Bone Jt. Surg. Am., 83-A, S31–S39.

  • Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ and Hanski C . (1999). Proc. Natl. Acad. Sci. USA, 96, 1603–1608.

  • Massague J, Blain SW and Lo RS . (2000). Cell, 103, 295–309.

  • Michaelson JS and Leder P . (2001). Oncogene, 20, 5093–5099.

  • Naishiro Y, Yamada T, Takaoka AS, Hayashi R, Hasegawa F, Imai K and Hirohashi S . (2001). Cancer Res., 61, 2751–2758.

  • Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H and Cho KW . (2000). Nature, 403, 781–785.

  • Oft M, Heider KH and Beug H . (1998). Curr. Biol., 8, 1243–1252.

  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H and Reichmann E . (1996). Genes Dev., 10, 2462–2477.

  • Orsulic S, Huber O, Aberle H, Arnold S and Kemler R . (1999). J. Cell Sci., 112, 1237–1245.

  • Peifer M and Polakis P . (2000). Science, 287, 1606–1609.

  • Polakis P . (2000). Genes Dev., 14, 1837–1851.

  • Reichmann E, Schwarz H, Deiner EM, Leitner I, Eilers M, Berger J, Busslinger M and Beug H . (1992). Cell, 71, 1103–1116.

  • Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R and Bienz M . (1997). Cell, 88, 777–787.

  • Roose J and Clevers H . (1999). Biochim. Biophys. Acta, 1424, M23–M37.

  • Sadot E, Simcha I, Shtutman M, Ben-Ze'ev A and Geiger B . (1998). Proc. Natl. Acad. Sci. USA, 95, 15339–15444.

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M and Massague J . (2001). Nat. Cell Biol., 3, 400–408.

  • Stockinger A, Eger A, Wolf J, Beug H and Foisner R . (2001). J. Cell Biol., 154, 1185–1196.

  • Takemaru KI and Moon RT . (2000). J. Cell Biol., 149, 249–254.

  • Ten Dijke P, Goumans MJ, Itoh F and Itoh S . (2002). J. Cell. Physiol., 191, 1–16.

  • Thiery JP . (2002). Nat Rev Cancer, 2, 442–454.

  • Tian YC and Phillips AO . (2002). Am. J. Pathol., 160, 1619–1628.

  • Uyttendaele H, Soriano JV, Montesano R and Kitajewski J . (1998). Dev. Biol., 196, 204–217.

  • Vallin J, Thuret R, Giacomello E, Farald MM, Thiery JP and Broders F . (2001). J. Biol. Chem., 276, 30350–30358.

  • Viebahn C . (1995). Acta Anat., 154, 79–97.

  • Warner BJ, Blain SW, Seoane J and Massague J . (1999). Mol. Cell. Biol., 19, 5913–5922.

  • Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H and Pals ST . (1999). Am. J. Pathol., 154, 515–523.

  • Yingling JM, Das P, Savage C, Zhang M, Padgett RW and Wang XF . (1996). Proc. Natl. Acad. Sci. USA, 93, 8940–8944.

Download references

Acknowledgements

We thank Hans Clevers, University Hospital, Utrecht, Netherlands, for providing the TCF-dependent luciferase reporter constructs and Caroline S Hill, Cancer Research Institute, London, UK, for Smad-dependent reporter constructs and Smad expression plasmids. This study was supported by grants from the Austrian Science Research Fund (FWF) No. SFB 006 to RF and HB and from the ‘Hochschuljubiläumsstiftung’of the City of Vienna to AE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Foisner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eger, A., Stockinger, A., Park, J. et al. β-Catenin and TGFβ signalling cooperate to maintain a mesenchymal phenotype after FosER-induced epithelial to mesenchymal transition. Oncogene 23, 2672–2680 (2004). https://doi.org/10.1038/sj.onc.1207416

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207416

Keywords

This article is cited by

Search

Quick links