Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modulation of the functional binding sites for TGF-β on the type II receptor leads to suppression of TGF-β signaling

Abstract

Transforming growth factor-β (TGF-β) binds to two different types of serine/threonine kinase receptors termed type II (TβR-II) and type I (TβR-I). TGF-β is unable to bind to TβR-I in the absence of TβR-II, and initiates receptor assembly by binding with high affinity to TβR-II. Previous structural analysis of the TGF-β3–TβR-II complex has suggested that two charged amino acid residues, D55 and E142 of TβR-II, are binding sites of TGF-β. In the present study, we have shown that mutations of the amino-acid residues, D55 and E142 of TβR-II, resulted in loss of TGF-β binding and downstream signaling activity. Moreover, we found that 3,5,7,2′,4′-pentahydroxyflavone (Morin) inhibits TGF-β binding to TβR-II, and suppresses phosphorylation of Smad2 and expression of a TGF-β target gene Smad7 induced by TGF-β. Our findings may thus provide useful information for designing therapeutic agents for various diseases induced by TGF-β, including advanced cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Allendorph GP, Vale WW, Choe S . (2006). Structure of the ternary signaling complex of a TGF-β superfamily member. Proc Natl Acad Sci USA 103: 7643–7648.

    Article  CAS  Google Scholar 

  • Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM et al. (2006). Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-β type I receptor kinase inhibitor. Cancer Res 66: 6714–6721.

    Article  CAS  Google Scholar 

  • Baron U, Gossen M, Bujard H . (1997). Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res 25: 2723–2729.

    Article  CAS  Google Scholar 

  • Birt DF, Bresnick E . (1990) In: Alfin-Slater RB and Kritchevsky D (eds). Chemoprevention by non-nutrient components of vegetables and fruits: Cancer and Nutrition. Plenum Press: New York, pp 221–260.

    Google Scholar 

  • Carcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L et al. (1994). Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor-β and activin. Mol Cell Biol 14: 3810–3821.

    Article  CAS  Google Scholar 

  • Daopin S, Piez KA, Ogawa Y, Davies DR . (1992). Crystal structure of transforming growth factor-β2: an unusual fold for the superfamily. Science 257: 369–373.

    Article  CAS  Google Scholar 

  • De Azevedo Jr WF, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH . (1996). Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 93: 2735–2740.

    Article  CAS  Google Scholar 

  • De Crescenzo G, Hinck CS, Shu Z, Zuniga J, Yang J, Tang Y et al. (2006). Three key residues underlie the differential affinity of the TGFβ isoforms for the TGFβ type II receptor. J Mol Biol 355: 47–62.

    Article  CAS  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A . (2001). TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129.

    Article  CAS  Google Scholar 

  • Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M et al. (1999). Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci 112: 3519–3527.

    CAS  PubMed  Google Scholar 

  • Era T, Witte ON . (2000). Regulated expression of P210 Bcr-Abl during embryonic stem cell differentiation stimulates multipotential progenitor expansion and myeloid cell fate. Proc Natl Acad Sci USA 97: 1737–1742.

    Article  CAS  Google Scholar 

  • Ewing T (ed). (1998). DOCK Version 4.0 Reference Manual. University of California at San Francisco (UCSF): San Francisco, Online versionhttp://www.cmpharm.ucsf.edu/kuntz/dock.html.

    Google Scholar 

  • Franzen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH et al. (1993). Cloning of a TGFβ type I receptor that forms a heteromeric complex with the TGFβ type II receptor. Cell 75: 681–692.

    Article  CAS  Google Scholar 

  • Frolik CA, Wakefield LM, Smith DM, Sporn MB . (1984). Characterization of a membrane receptor for transforming growth factor-β in normal rat kidney fibroblasts. J Biol Chem 259: 10995–11000.

    CAS  PubMed  Google Scholar 

  • Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C et al. (2003). Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol Cell 12: 817–828.

    Article  CAS  Google Scholar 

  • Greenwald J, Vega ME, Allendorph GP, Fischer WH, Vale W, Choe S . (2003). A flexible activin explains the membrane-dependent cooperative assembly of TGF-β family receptors. Mol Cell 15: 485–489.

    Article  Google Scholar 

  • Harrison CA, Gray PC, Koerber SC, Fischer W, Vale W . (2003). Identification of a functional binding site for activin on the type I receptor ALK4. J Biol Chem 278: 21129–21135.

    Article  CAS  Google Scholar 

  • Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP . (2002). Crystal structure of the human TβR2 ectodomain--TGF-β3 complex. Nat Struct Biol 9: 203–208.

    CAS  PubMed  Google Scholar 

  • Heldin CH, Miyazono K, ten Dijke P . (1997). TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465–471.

    Article  CAS  Google Scholar 

  • Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA et al. (1996). Transforming growth factor β1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor β2. Biochemistry 35: 8517–8534.

    Article  CAS  Google Scholar 

  • Hsiang CY, Wu SL, Ho TY . (2005). Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatocellular transformation via activator protein 1 signaling pathway and cell cycle progression. Biochem Pharmacol 69: 1603–1611.

    Article  CAS  Google Scholar 

  • Imamura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M et al. (1997). Smad6 inhibits signalling by the TGF-β superfamily. Nature 389: 622–626.

    Article  CAS  Google Scholar 

  • Kawabata M, Inoue H, Hanyu A, Imamura T, Miyazono K . (1998). Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J 17: 4056–4065.

    Article  CAS  Google Scholar 

  • Kelland LR . (2000). Flavopiridol, the first cyclin-dependent kinase inhibitor to enter the clinic: current status. Expert Opin Investig Drugs 9: 2903–2911.

    Article  CAS  Google Scholar 

  • Kirsch T, Sebald W, Dreyer MK . (2000). Crystal structure of the BMP-2-BRIA ectodomain complex. Nat Struct Biol 7: 492–496.

    Article  CAS  Google Scholar 

  • Lopez-Casillas F, Wrana JL, Massagué J . (1993). Betaglycan presents ligand to the TGFβ signaling receptor. Cell 73: 1435–1444.

    Article  CAS  Google Scholar 

  • Mittl PR, Priestle JP, Cox DA, McMaster G, Cerletti N, Grutter MG . (1996). The crystal structure of TGF-β3 and comparison to TGF-β2: implications for receptor binding. Protein Sci 5: 1261–1271.

    Article  CAS  Google Scholar 

  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K . (2002). Two major Smad pathways in TGF-β superfamily signalling. Genes Cells 7: 1191–1204.

    Article  CAS  Google Scholar 

  • Niwa H, Yamamura K, Miyazaki J . (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108: 193–199.

    Article  CAS  Google Scholar 

  • Oeda E, Oka Y, Miyazono K, Kawabata M . (1998). Interaction of Drosophila inhibitors of apoptosis with Thick veins, a type I serine/threonine kinase receptor for Decapentaplegic. J Biol Chem 273: 9353–9356.

    Article  CAS  Google Scholar 

  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK et al. (2000). Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97: 2626–2631.

    Article  CAS  Google Scholar 

  • Qian SW, Burmester JK, Tsang ML, Weatherbee JA, Hinck AP, Ohlsen DJ et al. (1996). Binding affinity of transforming growth factor-β for its type II receptor is determined by the C-terminal region of the molecule. J Biol Chem 271: 30656–30662.

    Article  CAS  Google Scholar 

  • Qian SW, Dumont N, O’Connor-McCourt MD, Burmester JK . (1999). Distinct functional domains of TGF-β bind receptors on endothelial cells. Growth Factors 17: 63–73.

    Article  CAS  Google Scholar 

  • Schlunegger MP, Grutter MG . (1992). An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-β2. Nature 358: 430–434.

    Article  CAS  Google Scholar 

  • Schwartz GK, Ilson D, Saltz L, O’Reilly E, Tong W, Maslak P et al. (2001). Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 19: 1985–1992.

    Article  CAS  Google Scholar 

  • Senderowicz AM . (1999). Flavopiridol: the first cyclin-dependent kinase inhibitor in human clinical trials. Invest New Drugs 17: 313–320.

    Article  CAS  Google Scholar 

  • Thompson TB, Woodruff TK, Jardetzky TS . (2003). Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-β ligand:receptor interactions. EMBO J 22: 1555–1566.

    Article  CAS  Google Scholar 

  • Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K et al. (2005). The ALK-5 Inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-β. Cancer Sci 96: 791–800.

    Article  CAS  Google Scholar 

  • Yamashita H, ten Dijke P, Franzen P, Miyazono K, Heldin CH . (1994). Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β. J Biol Chem 269: 20172–20178.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T Era for providing pCAG 20-1 and pUHD 10-3 puro vectors and M Laiho and J Massagué for DR-mutant Mv1Lu cells. We are grateful to the members of our group for their helpful discussions. This work was supported by grants from the Ministry of Education, Culture, Science, Sports, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Miyazono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimanuki, T., Hara, T., Furuya, T. et al. Modulation of the functional binding sites for TGF-β on the type II receptor leads to suppression of TGF-β signaling. Oncogene 26, 3311–3320 (2007). https://doi.org/10.1038/sj.onc.1210123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210123

Keywords

This article is cited by

Search

Quick links