Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma

Abstract

Tumor cell invasion is a primary event in the metastatic progression of hepatocellular carcinoma (HCC). Our recent results indicate a concordant elevated expression of osteopontin (OPN) and matrix metalloproteinase-9 (MMP-9) in primary metastatic HCC. This study hypothesizes an MMP-9-directed cleavage of OPN that biologically contributes to HCC metastasis. We found that MMP-9 cleaved OPN into specific fragments in vitro, of which three could be identified by Edman degradation amino-acid sequencing. One of these fragments (OPN-5 kDa, residues 167–210) induced low-metastatic HCC cellular invasion via CD44 receptors, which was effectively blocked by the addition of small peptides within the region of OPN-5 kDa. Increased expression of an OPN splice variant (OPN-c) was associated with clinical metastatic HCC. Overexpression of OPN-c with physiological levels of MMP-9 enhanced cellular invasion and coincided with elevated OPN-5 kDa levels. Our data suggest that an alternative splicing event (OPN-c) promotes extracellular cleavage of OPN by MMP-9, thus releasing a distinct region of OPN (OPN-5 kDa) that is essential for HCC cellular invasion and appears to correlate with metastatic potential. The findings of this study may help to improve advanced-stage HCC prognosis and suggest the utility of small peptides for novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

HCC:

hepatocellular carcinoma

MMP-9:

matrix metalloproteinase-9

OPN:

osteopontin

References

  • Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L . (2001). Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276: 28261–28267.

    Article  CAS  PubMed  Google Scholar 

  • Ashida K, Nakatsukasa H, Higashi T, Ohguchi S, Hino N, Nouso K et al. (1996). Cellular distribution of 92-kd type IV collagenase/gelatinase B in human hepatocellular carcinoma. Am J Pathol 149: 1803–1811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum HE . (2005). Liver cancer. Eur J Gastroenterol Hepatol 17: 475–476.

    Article  PubMed  Google Scholar 

  • Butler WT . (1995). Structural and functional domains of osteopontin. Ann NY Acad Sci 760: 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Coppola D, Szabo M, Boulware D, Muraca P, Alsarraj M, Chambers AF et al. (2004). Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res 10: 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS . (2001). Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107: 1055–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo K, Terada T . (2000). Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol 32: 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Fedarko NS, Jain A, Karadag A, Van Eman MR, Fisher LW . (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 7: 4060–4066.

    CAS  PubMed  Google Scholar 

  • Franco D, Capussotti L, Smadja C, Bouzari H, Meakins J, Kemeny F et al. (1990). Resection of hepatocellular carcinomas. Results in 72 European patients with cirrhosis. Gastroenterology 98: 733–738.

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K et al. (2001). Introduction of antisense CD44S CDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer 91: 67–75.

    Article  CAS  PubMed  Google Scholar 

  • He B, Mirza M, Weber GF . (2006). An osteopontin splice variant induces anchorage independence in human breast cancer cells. Oncogene 25: 2192–2202.

    Article  CAS  PubMed  Google Scholar 

  • Hotte SJ, Winquist EW, Stitt L, Wilson SM, Chambers AF . (2002). Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer 95: 506–512.

    Article  CAS  PubMed  Google Scholar 

  • Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH . (1999). Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J Biol Chem 274: 1729–1735.

    Article  CAS  PubMed  Google Scholar 

  • Kaneyoshi T, Nakatsukasa H, Higashi T, Fujiwara K, Naito I, Nouso K et al. (2001). Actual invasive potential of human hepatocellular carcinoma revealed by in situ gelatin zymography. Clin Cancer Res 7: 4027–4032.

    CAS  PubMed  Google Scholar 

  • Lesley J, Hyman R . (1998). CD44 structure and function. Front Biosci 3: d616–d630.

    Article  CAS  PubMed  Google Scholar 

  • Lin LI, Ke YF, Ko YC, Lin JK . (1998). Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology 55: 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Tarin D . (1992). Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet 340: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  • McKenna GJ, Chen Y, Smith RM, Meneghetti A, Ong C, McMaster R et al. (2002). A role for matrix metalloproteinases and tumor host interaction in hepatocellular carcinomas. Am J Surg 183: 588–594.

    Article  CAS  PubMed  Google Scholar 

  • Pan HW, Ou YH, Peng SY, Liu SH, Lai PL, Lee PH et al. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Ponta H, Sherman L, Herrlich PA . (2003). CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4: 33–45.

    Article  CAS  PubMed  Google Scholar 

  • Prince CW, Dickie D, Krumdieck CL . (1991). Osteopontin, a substrate for transglutaminase and factor XIII activity. Biochem Biophys Res Commun 177: 1205–1210.

    Article  CAS  PubMed  Google Scholar 

  • Rittling SR, Chambers AF . (2004). Role of osteopontin in tumour progression. Br J Cancer 90: 1877–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittling SR, Chen Y, Feng F, Wu Y . (2002). Tumor-derived osteopontin is soluble, not matrix associated. J Biol Chem 277: 9175–9182.

    Article  CAS  PubMed  Google Scholar 

  • Rudzki Z, Jothy S . (1997). CD44 and the adhesion of neoplastic cells. Mol Pathol 50: 57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh Y, Kuratsu J, Takeshima H, Yamamoto S, Ushio Y . (1995). Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab Invest 72: 55–63.

    CAS  PubMed  Google Scholar 

  • Senger DR, Perruzzi CA, Gracey CF, Papadopoulos A, Tenen DG . (1988). Secreted phosphoproteins associated with neoplastic transformation: close homology with plasma proteins cleaved during blood coagulation. Cancer Res 48: 5770–5774.

    CAS  PubMed  Google Scholar 

  • Si MS, Amersi F, Golish SR, Ortiz JA, Zaky J, Finklestein D et al. (2003). Prevalence of metastases in hepatocellular carcinoma: risk factors and impact on survival. Am Surg 69: 879–885.

    PubMed  Google Scholar 

  • Singhal H, Bautista DS, Tonkin KS, O’Malley FP, Tuck AB, Chambers AF et al. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3: 605–611.

    CAS  PubMed  Google Scholar 

  • Sorensen ES, Rasmussen LK, Moller L, Jensen PH, Hojrup P, Petersen TE . (1994). Localization of transglutaminase-reactive glutamine residues in bovine osteopontin. Biochem J 304 (Part 1): 13–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Takahashi F, Tanabe KK, Takahashi H, Fukuchi Y . (1998). The carboxyl-terminal fragment of osteopontin suppresses arginine–glycine–asparatic acid-dependent cell adhesion. Biochem Mol Biol Int 46: 1081–1092.

    CAS  PubMed  Google Scholar 

  • Theret N, Musso O, Turlin B, Lotrian D, Bioulac-Sage P, Campion JP et al. (2001). Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology 34: 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Turpeenniemi-Hujanen T . (2005). Gelatinases (MMP-2 and -9) and their natural inhibitors as prognostic indicators in solid cancers. Biochimie 87: 287–297.

    Article  CAS  PubMed  Google Scholar 

  • van Kempen LC, Coussens LM . (2002). MMP9 potentiates pulmonary metastasis formation. Cancer Cell 2: 251–252.

    Article  CAS  PubMed  Google Scholar 

  • Wai PY, Kuo PC . (2004). The role of Osteopontin in tumor metastasis. J Surg Res 121: 228–241.

    Article  CAS  PubMed  Google Scholar 

  • Wang X . (2005). Osteopontin overexpression in hepatocellular carcinoma is a predictor of survival after liver transplantation. Hepatology 42: 391A.

    Google Scholar 

  • Weber GF . (2001). The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta 1552: 61–85.

    Article  CAS  PubMed  Google Scholar 

  • Weber GF, Ashkar S, Cantor H . (1997). Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc Assoc Am Physicians 109: 1–9.

    CAS  PubMed  Google Scholar 

  • Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S . (2002). Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol 72: 752–761.

    CAS  PubMed  Google Scholar 

  • Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC et al. (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9: 416–423.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by intramural funding at the Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. The authors thank Dominic Esposito of the SAIC-Frederick Protein Expression Lab, Frederick, MD, USA for help with cloning of the OPN expression constructs. We also thank Curtis Harris and Anuradha Budhu for critical comments and the NIH Fellows Editorial Board for editorial review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X W Wang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takafuji, V., Forgues, M., Unsworth, E. et al. An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26, 6361–6371 (2007). https://doi.org/10.1038/sj.onc.1210463

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210463

Keywords

This article is cited by

Search

Quick links