Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

JAK kinases overexpression promotes in vitro cell transformation

Abstract

Constitutive activation of the JAK-STAT pathway is frequent in cancer and contributes to oncogenesis. Here, we took advantage of the Ba/F3 cell line, a murine proB cell line dependent on IL-3 for growth, to analyse mechanisms of constitutive STAT activation in vitro. Cytokine-independent and tumorigenic Ba/F3 cell lines were derived from a two-step selection process. Cells transfected with a defective IL-9 receptor acquire IL-9 responsiveness during a first step of selection, and progress after a second selection step to autonomously growing tumorigenic cells. Microarray analysis pointed to JAK1 overexpression as a key genetic event in this transformation. Overexpression of JAK1 not only increased the sensitivity to IL-9 but also allowed a second selection step toward cytokine-independent growth with constitutive STAT activation. This progression was dependent on a functional FERM and kinase JAK1 domain. Similar results were observed after JAK2, JAK3 and TYK2 overexpression. All autonomous cell lines showed an activation of STAT5, ERK1–2 and AKT but only TYK2-overexpressing cell lines showed a constitutive activation of STAT3. Thus, JAK overexpression can be considered as one of the oncogenic events leading to the constitutive activation of the JAK-STAT pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  • Bowman T, Garcia R, Turkson J, Jove R . (2000). STATs in oncogenesis. Oncogene 19: 2474–2488.

    Article  CAS  PubMed  Google Scholar 

  • Bromberg J . (2002). STAT proteins and oncogenesis. J Clin Invest 109: 1139–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochet O, Frelin C, Peyron JF, Imbert V . (2006). Constitutive activation of STAT proteins in the HDLM-2 and L540 Hodgkin lymphoma-derived cell lines supports cell survival. Cell Signal 18: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Demoulin JB, Uyttenhove C, Lejeune D, Mui A, Groner B, Renauld JC . (2000). STAT5 activation is required for interleukin-9-dependent growth and transformation of lymphoid cells. Cancer Res 60: 3971–3977.

    CAS  PubMed  Google Scholar 

  • Demoulin JB, Uyttenhove C, Van Roost E, DeLestre B, Donckers D, Van Snick J et al. (1996). A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 16: 4710–4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druez C, Coulie P, Uyttenhove C, Van Snick J . (1990). Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145: 2494–2499.

    CAS  PubMed  Google Scholar 

  • Fischer M, Bijman M, Molin D, Cormont F, Uyttenhove C, Van Snick J et al. (2003). Increased serum levels of interleukin-9 correlate to negative prognostic factors in Hodgkin's lymphoma. Leukemia 17: 2513–2516.

    Article  CAS  PubMed  Google Scholar 

  • Guiter C, Dusanter-Fourt I, Copie-Bergman C, Boulland ML, Le Gouvello S, Gaulard P et al. (2004). Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104: 543–549.

    Article  CAS  PubMed  Google Scholar 

  • Haan C, Is’harc H, Hermanns HM, Schmitz-Van De Leur H, Kerr IM, Heinrich PC et al. (2001). Mapping of a region within the N terminus of JAK1 involved in cytokine receptor interaction. J Biol Chem 276: 37451–37458.

    Article  CAS  PubMed  Google Scholar 

  • He B, You L, Uematsu K, Zang K, Xu Z, Lee AY et al. (2003). SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA 100: 14133–14138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang LJ, Constantinescu SN, Lodish HF . (2001). The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell 8: 1327–1338.

    Article  CAS  PubMed  Google Scholar 

  • James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  • Joos S, Granzow M, Holtgreve-Grez H, Siebert R, Harder L, Martin-Subero JI et al. (2003). Hodgkin's lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer 103: 489–495.

    Article  CAS  PubMed  Google Scholar 

  • Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M et al. (2000). Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 60: 549–552.

    CAS  PubMed  Google Scholar 

  • Kelleher K, Bean K, Clark SC, Leung WY, Yang-Feng TL, Chen JW et al. (1991). Human interleukin-9: genomic sequence, chromosomal location, and sequences essential for its expression in human T-cell leukemia virus (HTLV)-I-transformed human T cells. Blood 77: 1436–1441.

    CAS  PubMed  Google Scholar 

  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. GENE 285: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Knoops L, Renauld JC . (2004). IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22: 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Kohlhuber F, Rogers NC, Watling D, Feng J, Guschin D, Briscoe J et al. (1997). A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol Cell Biol 17: 695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  • Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al. (2001). STAT3 is constitutively activated in Hodgkin cell lines. Blood 98: 762–770.

    Article  CAS  PubMed  Google Scholar 

  • Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. (1997). A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  • Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Constantinescu SN, Sun Y, Bogan JS, Hirsch D, Weinberg RA et al. (2000). Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal Biochem 280: 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Louahed J, Grasso L, De Smet C, Van Roost E, Wildmann C, Nicolaides NC et al. (1999). Interleukin-9-induced expression of M-Ras/R-Ras3 oncogene in T-helper clones. Blood 94: 1701–1710.

    CAS  PubMed  Google Scholar 

  • Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. (2005). Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci USA 102: 18962–18967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merz H, Houssiau FA, Orscheschek K, Renauld JC, Fliedner A, Herin M et al. (1991). Interleukin-9 expression in human malignant lymphomas: unique association with Hodgkin's disease and large cell anaplastic lymphoma. Blood 78: 1311–1317.

    CAS  PubMed  Google Scholar 

  • Nagai H, Naka T, Terada Y, Komazaki T, Yabe A, Jin E et al. (2003). Hypermethylation associated with inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human hepatoblastomas. J Hum Genet 48: 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Palacios R, Steinmetz M . (1985). IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41: 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Radtke S, Hermanns HM, Haan C, Schmitz-Van De Leur H, Gascan H, Heinrich PC et al. (2002). Novel role of Janus kinase 1 in the regulation of oncostatin M receptor surface expression. J Biol Chem 277: 11297–11305.

    Article  CAS  PubMed  Google Scholar 

  • Ragimbeau J, Dondi E, Alcover A, Eid P, Uze G, Pellegrini S . (2003). The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 22: 537–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat R, Rainey GJ, Thompson CD, Frazier-Jessen MR, Brown RT, Nordan RP . (2000). Constitutive activation of STAT3 is associated with the acquisition of an interleukin 6-independent phenotype by murine plasmacytomas and hybridomas. Blood 96: 3514–3521.

    CAS  PubMed  Google Scholar 

  • Renauld JC, Kermouni A, Vink A, Louahed J, Van Snick J . (1995). Interleukin-9 and its receptor: involvement in mast cell differentiation and T cell oncogenesis. J Leukoc Biol 57: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Renauld JC, van der Lugt N, Vink A, van Roon M, Godfraind C, Warnier G et al. (1994). Thymic lymphomas in interleukin 9 transgenic mice. Oncogene 9: 1327–1332.

    CAS  PubMed  Google Scholar 

  • Renauld JC, Van Snick J . (2003) In: Thompson A (ed). The Cytokine Handbook. Academic Press: London,, pp 347–358.

    Book  Google Scholar 

  • Rucker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Frohling S et al. (2006). Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. J Clin Oncol 24: 3887–3894.

    Article  PubMed  Google Scholar 

  • Seubert N, Royer Y, Staerk J, Kubatzky KF, Moucadel V, Krishnakumar S et al. (2003). Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cell 12: 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Staerk J, Kallin A, Demoulin JB, Vainchenker W, Constantinescu SN . (2005). JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross-talk with IGF1 receptor. J Biol Chem 280: 41893–41899.

    Article  CAS  PubMed  Google Scholar 

  • Trikha M, Corringham R, Klein B, Rossi JF . (2003). Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9: 4653–4665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uyttenhove C, Druez C, Renauld JC, Herin M, Noel H, Van Snick J . (1991). Autonomous growth and tumorigenicity induced by P40/interleukin 9 cDNA transfection of a mouse P40-dependent T cell line. J Exp Med 173: 519–522.

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Chen M, Cusack NA, Kimmel LH, Magnuson KS, Boyd JG et al. (2001). Unexpected effects of FERM domain mutations on catalytic activity of JAK3: structural implication for Janus kinases. Mol Cell 8: 959–969.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Belgian Federal Service for Scientific, Technical, and Cultural Affairs, by the Actions de Recherche Concertées of the Communauté Francaise de Belgique and the operation Télévie. LK is a postdoctoral researcher and SC a research associate with the Fonds National de la Recherche Scientifique, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-C Renauld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoops, L., Hornakova, T., Royer, Y. et al. JAK kinases overexpression promotes in vitro cell transformation. Oncogene 27, 1511–1519 (2008). https://doi.org/10.1038/sj.onc.1210800

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210800

Keywords

This article is cited by

Search

Quick links