Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks

Abstract

The recognition and repair of DNA double-strand breaks (DSBs) is a complex process that draws upon a multitude of proteins. This is not surprising since this is a lethal lesion if left unrepaired and also contributes to genome instability and the consequential risk of cancer and other pathologies. Some of the key proteins that recognize these breaks in DNA are mutated in distinct genetic disorders that predispose to agent sensitivity, genome instability, cancer predisposition and/or neurodegeneration. These include members of the Mre11 complex (Mre11/Rad50/Nbs1) and ataxia-telangiectasia (A-T) mutated (ATM), mutated in the human genetic disorder A-T. The mre11 (MRN) complex appears to be the major sensor of the breaks and subsequently recruits ATM where it is activated to phosphorylate in turn members of that complex and a variety of other proteins involved in cell-cycle control and DNA repair. The MRN complex is also upstream of ATM and ATR (A-T-mutated and rad3-related) protein in responding to agents that block DNA replication. To date, more than 30 ATM-dependent substrates have been identified in multiple pathways that maintain genome stability and reduce the risk of disease. We focus here on the relationship between ATM and the MRN complex in recognizing and responding to DNA DSBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Adams KE, Medhurst AL, Dart DA, Lakin ND . (2006). Recruitment of ATR to sites of ionizing radiation-induced DNA damage requires ATM and components of the MRN protein complex. Oncogene 25: 3894–3904.

    Article  CAS  Google Scholar 

  • Agarwal S, Tafel AA, Kanaar R . (2006). DNA double-strand break and chromosome translocations. DNA Repair 5: 1075–1081.

    Article  CAS  Google Scholar 

  • Ali A, Zhang J, Bao S, Liu I, Otterness D, Dean NM et al. (2004). Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev 18: 249–254.

    Article  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  Google Scholar 

  • Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J et al. (2006). Spatial organisation of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173: 195–206.

    Article  CAS  Google Scholar 

  • Berkovich E, Monnat Jr RJ, Kastan MB . (2007). Roles of ATM and Nbs1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9: 683–690.

    Article  CAS  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD . (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22: 6610–6620.

    Article  CAS  Google Scholar 

  • Cerosaletti K, Concannon P . (2004). Independent roles for nibrin and Mre11-Rad50 in the activation and function of Atm. J Biol Chem 279: 38813–38819.

    Article  CAS  Google Scholar 

  • Cerosaletti K, Wright J, Concannon P . (2006). Active role for nibrin in the kinetics of Atm activation. Mol Cell Biol 26: 1691–1699.

    Article  CAS  Google Scholar 

  • Costanzo V, Paull T, Gottesman M, Gautier J . (2004). Mre11 assembles linear DNA fragments into DNA damage signalling complexes. PLoS Biol 2: E110.

    Article  Google Scholar 

  • Costanzo V, Robertson K, Bibikova M, Kim E, Grieco D, Gottesman M et al. (2001). Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol Cell 8: 137–147.

    Article  CAS  Google Scholar 

  • Costanzo V, Robertson K, Ying CY, Kim E, Avvedimento E, Gottesman M et al. (2000). Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell 6: 649–659.

    Article  CAS  Google Scholar 

  • D’Amours D, Jackson SP . (2002). The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Mol Cell Biol 3: 317–327.

    Google Scholar 

  • De Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C . (2001). Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8: 1129–1135.

    Article  CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. (2005). Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7: 675–685.

    Article  CAS  Google Scholar 

  • Difilippantonio S, Celeste A, Kruhlak MJ, Lee Y, Difilippantonio MJ, Feigenbaum L et al. (2007). Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J Exp Med 204: 1003–1011.

    Article  CAS  Google Scholar 

  • Digweed M, Reis A, Sperling K . (1999). Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. BioEssays 21: 649–656.

    Article  CAS  Google Scholar 

  • Dong Z, Zhong Q, Chen PL . (1999). The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J Biol Chem 274: 19513–19516.

    Article  CAS  Google Scholar 

  • Dudley DD, Chaudhuri J, Bassing CH, Atl FW . (2005). Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86: 43–112.

    Article  CAS  Google Scholar 

  • Dupre A, Boyer-Chatenet L, Gautier J . (2006). Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat Struct Mol Biol 13: 451–457.

    Article  CAS  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    Article  CAS  Google Scholar 

  • Featherstone C, Jackson SP . (1999). Ku, a DNA repair protein with multiple cellular functions? Mutat Res 434: 3–15.

    Article  CAS  Google Scholar 

  • Foray N, Priestley A, Alsbeih G, Badie C, Capulas EP et al. (1997). Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int J Radiat Biol 72: 271–283.

    Article  CAS  Google Scholar 

  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta K, Spring K, Kozlov S et al. (2000). ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25: 115–119.

    Article  CAS  Google Scholar 

  • Girard PM, Foray N, Stumm M, Waugh A, Riballo E et al. (2000). Radiosensitivity in Nijmegen breakage syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res 60: 4881–4888.

    CAS  PubMed  Google Scholar 

  • Goodarzi AA, Jonnalagadda JC, Douglas P, Young D, Ye R, Moorhead GB et al. (2004). Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J 23: 4451–4461.

    Article  CAS  Google Scholar 

  • Hamer G, Kal HB, Westphal CH, Ashley T, de Rooij DG . (2004). Ataxia telangiectasia mutated expression and activation in the testis. Biol Reprod 70: 1206–1212.

    Article  CAS  Google Scholar 

  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al. (2004). Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64: 9152–9159.

    Article  CAS  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA et al. (2002). The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418: 562–566.

    Article  CAS  Google Scholar 

  • Jiang X, Sun Y, Chen S, Roy K, Price BD . (2006). The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J Biol Chem 281: 15741–15746.

    Article  CAS  Google Scholar 

  • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB . (2004). Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18: 1423–1438.

    Article  CAS  Google Scholar 

  • Kozlov S, Gueven N, Keating K, Ramsay J, Lavin MF . (2003). ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 278: 9309–9317.

    Article  CAS  Google Scholar 

  • Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF . (2006). Involvement of novel autophosphorylation sites in ATM activation. EMBO J 25: 3504–3514.

    Article  CAS  Google Scholar 

  • Krause DR, Jonnalagadda JC, Gatei MH, Sillje HH, Zhou B, Nigg EA et al. (2003). Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene 22: 5927–5937.

    Article  CAS  Google Scholar 

  • Lee JH, Paull TT . (2004). Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304: 93–96.

    Article  CAS  Google Scholar 

  • Lee JH, Paull TT . (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554.

    Article  CAS  Google Scholar 

  • Lim DS, Kim ST, Xu B, Maser RS, Lin JH et al. (2000). ATM phosphorylates p95/Nbs1 in an S-phase checkpoint pathway. Nature 404: 613–617.

    Article  CAS  Google Scholar 

  • Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jørgensen C, Miron IM et al. (2007). Systematic discovery on in vivo phosphorylation networks. Cell 129: 1415–1426.

    Article  CAS  Google Scholar 

  • Lisby M, Rothstein R . (2004). DNA repair: keeping it together. Curr Biol 14: R994–R996.

    Article  CAS  Google Scholar 

  • Livak F . (2004). In vitro and in vivo studies on the generation of the primary T-cell receptor repertoire. Immunol Rev 200: 23–35.

    Article  CAS  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A et al. (2006). MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21: 187–200.

    Article  CAS  Google Scholar 

  • Lukas J, Bohr VA, Halazonetis TD . (2006). Cellular responses to DNA damage: current state of the field and review of the 52nd Benzon Symposium. DNA Repair 5: 591–601.

    Article  CAS  Google Scholar 

  • Maser RS, Monsen KJ, Nelms BE, Petrini JH . (1997). hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 17: 6087–6096.

    Article  CAS  Google Scholar 

  • Matsouka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    Article  Google Scholar 

  • McManus KJ, Hendzel MJ . (2005). Using quantitative imaging microscopy to define the target substrate specificities of histone post-translational-modifying enzymes. Methods 36: 351–361.

    Article  CAS  Google Scholar 

  • Meek K, Gupta S, Ramsden DA, Lees-Miller SP . (2004). The DNA-dependent protein kinase: the director at the end. Immunol Rev 200: 132–141.

    Article  CAS  Google Scholar 

  • Mirzoeva OK, Petrini JH . (2001). DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol Cell Biol 21: 281–288.

    Article  CAS  Google Scholar 

  • Mirzoeva OK, Petrini JH . (2003). DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol Cancer Res 1: 207–218.

    CAS  PubMed  Google Scholar 

  • Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C . (2005). Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437: 440–443.

    Article  CAS  Google Scholar 

  • Myers JS, Cortez D . (2006). Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281: 9346–9350.

    Article  CAS  Google Scholar 

  • Nelms K, Huang H, Ryan J, Keegan A, Paul WE . (1998). Interleukin-4 receptor signalling mechanisms and their biological significance. Adv Exp Med Biol 452: 37–43.

    Article  CAS  Google Scholar 

  • Orii KE, Lee Y, Kondo N, McKinnon PJ . (2006). Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci USA 103: 10017–10022.

    Article  CAS  Google Scholar 

  • Paull TT, Gellert M . (1998). The 3 to 5 exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol Cell 1: 969–979.

    Article  CAS  Google Scholar 

  • Paull TT, Gellert M . (1999). Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13: 1276–1288.

    Article  CAS  Google Scholar 

  • Paulsen RD, Cimprich KA . (2007). The ATR pathway: fine-tuning the fork. DNA Repair 6: 953–966.

    Article  CAS  Google Scholar 

  • Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L et al. (2006). Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443: 222–225.

    Article  CAS  Google Scholar 

  • Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG . (2004). E2F1 uses the ATM signalling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2: 203–214.

    CAS  PubMed  Google Scholar 

  • Riballo E, Doherty AJ, Dai Y, Stiff T, Oettinger MA, Jeggo PA et al. (2001). Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J Biol Chem 276: 31124–33132.

    Article  CAS  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    Article  CAS  Google Scholar 

  • Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC et al. (2006). Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 25: 222–231.

    Article  CAS  Google Scholar 

  • Schroff KC, Cowen MS, Koch S, Spanagel R . (2004). Strain-specific responses of inbred mice to ethanol following food shortage. Addict Biol 9: 265–271.

    Article  CAS  Google Scholar 

  • Shen X, Mizuguchi G, Hamiche A, Wu C . (2000). A chromatin remodelling complex involved in transcription and DNA processing. Nature 406: 541–544.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2006). The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31: 402–410.

    Article  CAS  Google Scholar 

  • Stracker TH, Carson CT, Weitzman MD . (2002). Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418: 348–352.

    Article  CAS  Google Scholar 

  • Stracker TH, Morales M, Couto SS, Hussein H, Petrini JH . (2007). The carboxy terminus of NBS1 is required for induction of apoptosis by the Mre11 complex. Nature 447: 218–221.

    Article  CAS  Google Scholar 

  • Sun Y, Jiang X, Chen S, Fernandes N, Price BD . (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102: 13182–13187.

    Article  CAS  Google Scholar 

  • Trujillo KM, Sung P . (2001). DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50 Mre11 complex. J Biol Chem 276: 35458–35464.

    Article  CAS  Google Scholar 

  • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA . (2005). Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438: 379–383.

    Article  CAS  Google Scholar 

  • Usui T, Petrini JH, Morales M . (2006). Rad50S alleles of the Mre11 complex: questions answered and questions raised. Exp Cell Res 312: 2694–2699.

    Article  CAS  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittleman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    Article  CAS  Google Scholar 

  • Valerie K, Povirk LF . (2003). Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22: 5792–5812.

    Article  CAS  Google Scholar 

  • van den Bosch M, Ronan T, Lowndes BN . (2003). The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4: 844–849.

    Article  CAS  Google Scholar 

  • Ward JF . (1985). Biochemistry of DNA lesions. Radiat Res Suppl 8: 103–111.

    Article  Google Scholar 

  • Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J . (2002). SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 16: 571–582.

    Article  CAS  Google Scholar 

  • Yuan SS, Chang HL, Hou MF, Chan TF, Kao YH, Wu YC et al. (2002). Neocarzinostatin induces Mre11 phosphorylation and focus formation through an ATM- and NBS1-dependent mechanism. Toxicology 177: 123–130.

    Article  CAS  Google Scholar 

  • Zhang J, Bao S, Furumai R, Kucera KS, Ali A, Dean NM et al. (2005). Protein phosphatase 5 is required for ATR-mediated checkpoint activation. Mol Cell Biol 25: 9910–9919.

    Article  CAS  Google Scholar 

  • Zhou BB, Elledge SJ . (2000). The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M F Lavin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavin, M. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26, 7749–7758 (2007). https://doi.org/10.1038/sj.onc.1210880

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210880

Keywords

This article is cited by

Search

Quick links