Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of CYP2D6, CYP2C9 and ABCB1 genotypes on fluoxetine plasma concentrations and clinical improvement in children and adolescent patients

Abstract

There is little known about pharmacogenetic of fluoxetine in children and adolescents. In this study, we evaluate, for the first time, the influence of CYP2D6, CYP2C9 and ABCB1 genotypes on the steady-state plasma concentrations of fluoxetine and its active metabolite (S)-norfluoxetine, and on the clinical improvement in children and adolescent patients receiving fluoxetine treatment. The assessment was performed in 83 patients after 8 and 12 weeks of treatment. Fluoxetine/(S)-norfluoxetine ratio was negatively correlated with the number of active CYP2D6 alleles (r: −0.450; P<0.001). Regarding the G2677T ABCB1 polymorphism, T allele carriers showed significantly higher improvements on the majority of scales including the Clinical Global Impression-Improvement scale (P<0.001). Our results confirm the influence of CYP2D6 genetic variants in fluoxetine pharmacokinetics and provide evidence for the potential effect of the ABCB1 genotype on the clinical improvement in children and adolescent patients treated with fluoxetine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Usala T, Clavenna A, Zuddas A, Bonati M . Randomised controlled trials of selective serotonin reuptake inhibitors in treating depression in children and adolescents: a systematic review and meta-analysis. Eur Neuropsychopharmacol 2008; 18: 62–73.

    Article  CAS  PubMed  Google Scholar 

  2. Keeton CP, Kolos AC, Walkup JT . Pediatric generalized anxiety disorder: epidemiology, diagnosis and management. Paediatr Drugs 2009; 11: 171–183.

    Article  PubMed  Google Scholar 

  3. Wilens TE, Cohen L, Biederman J, Abrams A, Neft D, Faird N et al. Fluoxetine Pharmacokinetics in pediatric patients. J Clin Psychopharmacol 2002; 22: 568–575.

    Article  CAS  PubMed  Google Scholar 

  4. Blazquez A, Mas S, Plana MT, Lafuente A, Lázaro L . Fluoxetine pharmacogenetics in child and adult populations. Eur Child Adolesc Psychiatry 2012; 21: 599–610.

    Article  PubMed  Google Scholar 

  5. DeVane CL . Metabolism and pharmacokinetics of selective serotonin reuptake inhibitors. Cell Mol Neurobiol 1999; 19: 443–466.

    Article  CAS  PubMed  Google Scholar 

  6. Hiemke C, Härtter S . Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2000; 85: 11–28.

    Article  CAS  PubMed  Google Scholar 

  7. Ring BJ, Eckstein JA, Gillespie JS, Binkley SN, VandenBranden M, Wrighton SA . Identification of the human cytochromes P450 responsible for in vitro formation of R- and S-norfluoxetine. J Pharmacol Exp Ther 2001; 297: 1044–1050.

    CAS  PubMed  Google Scholar 

  8. Sachse C, Brockmöller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Causasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rettie AE, Wienkers LC, González FJ, Trager WF, Korzekwa KR . Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4: 39–42.

    Article  CAS  PubMed  Google Scholar 

  10. Haining RL, Hunter AP, Veronese ME, Trager WF, Rettie AE . Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996; 333: 447–458.

    Article  CAS  PubMed  Google Scholar 

  11. Uhr M, Grauer MT, Yassouridis A, Ebinger M . Blood-brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in P-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res 2007; 41: 179–188.

    Article  PubMed  Google Scholar 

  12. Uhr M, Grauer MT, Holsboer F . Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry 2003; 54: 840–846.

    Article  CAS  PubMed  Google Scholar 

  13. Uhr M, Grauer MT . Abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res 2003; 37: 179–185.

    Article  PubMed  Google Scholar 

  14. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97: 3473–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eichelbaum M, Fromm MF, Schwab M . Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther Drug Monit 2004; 26: 180–185.

    Article  CAS  PubMed  Google Scholar 

  16. Scordo MG, Spina E, Dahl ML, Gatti G, Perucca E . Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol 2005; 97: 296–301.

    Article  CAS  PubMed  Google Scholar 

  17. Serretti A, Calati R, Massat I, Linotte S, Kasper S, Lecrubier Y et al. Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes are not associated with response and remission in a sample of depressive patients. Int Clin Psychopharmacol 2009; 24: 250–256.

    Article  PubMed  Google Scholar 

  18. Llerena A, Dorado P, Berecz R, González AP, Peñas-Lledó EM . Effect of CYP2D6 and CYP2C9 genotypes on fluoxetine and norfluoxetine plasma concentrations during steady-state conditions. Eur J Clin Pharmacol 2004; 59: 869–873.

    Article  CAS  PubMed  Google Scholar 

  19. Menu P, Gressier F, Verstuyft C, Hardy P, Becquemont L, Corruble E . Antidepressants and ABCB1 gene C3435T functional polymorphism: a naturalistic study. Neuropsychobiology 2010; 62: 193–197.

    Article  CAS  PubMed  Google Scholar 

  20. Dong C, Wong ML, Licinio J . Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry 2009; 14: 1105–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Press: Washington, DC, 1994.

  22. Llerena A, Dorado P, Berecz R, González A, Norberto JM, de la Rubia A et al. Determination of fluoxetine and norfluoxetine in human plasma by high-performance liquid chromatography with ultraviolet detection in psychiatric patients. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783: 25–31.

    Article  CAS  PubMed  Google Scholar 

  23. Kovacs M . Children’s Depression Inventory Manual. Multi-Health Systems: New York, 1992.

    Google Scholar 

  24. Foa EB, Coles M, Huppert JD, Pasupuleti RV, Franklin ME, March J . Development and validation of a child version of the obsessive compulsive inventory. Behav Ther 2010; 41: 121–132.

    Article  PubMed  Google Scholar 

  25. Birmaher B, Khetarpal S, Brent D, Cully M, Balach L, Kaufman J et al. The Screen for Child Anxiety Related Emotional Disorders (SCARED): scale construction and psychometric characteristics. J Am Acad Child Adolesc Psychiatry 1997; 36: 545–553.

    Article  CAS  PubMed  Google Scholar 

  26. Guy W . ECDEU Assessment Manual for Psychopharmacology, Revised. United States Department of Health, Education, and Welfare: Bethesda, MD, 1976.

    Google Scholar 

  27. Luborsky L . Clinician’s judgments of mental health: a proposed scale. Arch Gen Psychiatry 1962; 7: 407–417.

    Article  CAS  PubMed  Google Scholar 

  28. Shaffer D, Gould MS, Brasic J, Ambrosini P, Fisher P, Bird H et al. A children's global assessment scale (CGAS). Arch Gen Psychiatry 1983; 40: 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  29. Lundmark J, Reis M, Bengtsson F . Serum concentrations of fluoxetine in the clinical treatment setting. Ther Drug Monit 2001; 23: 139–147.

    Article  CAS  PubMed  Google Scholar 

  30. Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M et al. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 2001; 21: 330–334.

    Article  CAS  PubMed  Google Scholar 

  31. Charlier C, Broly F, Lhermitte M, Pinto E, Ansseau M, Plomteaux G . Polymorphisms in the CYP2D6 gene: association with plasma concentrations of fluoxetine and paroxetine. Ther Drug Monit 2003; 25: 738–742.

    Article  CAS  PubMed  Google Scholar 

  32. Grasmäder K, Verwohlt PL, Rietschel M, Dragicevic A, Müller M, Hiemke C et al. Impact of polymorphisms of cytochrome-P450 isoenzymes 2C9, 2C19 and 2D6 on plasma concentrations and clinical effects of antidepressants in a naturalistic clinical setting. Eur J Clin Pharmacol 2004; 60: 329–336.

    PubMed  Google Scholar 

  33. Jannuzzi G, Gatti G, Magni P, Spina E, Pacifici R, Zuccaro P et al. Plasma concentrations of the enantiomers of fluoxetine and norfluoxetine: sources of variability and preliminary observations on relations with clinical response. Ther Drug Monit 2002; 24: 616–627.

    Article  CAS  PubMed  Google Scholar 

  34. Rasmussen BB, Brøsen K . Is therapeutic drug monitoring a case for optimizing clinical outcome and avoiding interactions of the selective serotonin reuptake inhibitors? Ther Drug Monit 2000; 22: 143–154.

    Article  CAS  PubMed  Google Scholar 

  35. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G et al. CYP2D6 and ABCB1 genetic variability: influence on paroxetine plasma level and therapeutic response. Ther Drug Monit 2008; 30: 474–482.

    CAS  PubMed  Google Scholar 

  36. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy GM Jr. . ABCB1 (MDR1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genomics 2010; 20: 467–475.

    Article  CAS  PubMed  Google Scholar 

  37. Nikisch G, Eap CB, Baumann P . Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res 2008; 58: 344–347.

    Article  CAS  PubMed  Google Scholar 

  38. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 2008; 57: 203–209.

    Article  CAS  PubMed  Google Scholar 

  39. Kato M, Fukuda T, Serretti A, Wakeno M, Okugawa G, Ikenaga Y et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 398–404.

    Article  CAS  PubMed  Google Scholar 

  40. Uhr M, Steckler T, Yassouridis A, Holsboer F . Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22: 380–387.

    Article  CAS  PubMed  Google Scholar 

  41. Noordam R, Aarts N, Hofman A, van Schaik RH, Stricker BH, Visser LE . Association between genetic variation in the ABCB1 gene and switching, discontinuation, and dosage of antidepressant therapy: results from the Rotterdam Study. J Clin Psychopharmacol 2013; 33: 546–550.

    Article  CAS  PubMed  Google Scholar 

  42. Fujii T, Ota M, Hori H, Sasayama D, Hattori K, Teraishi T et al. Association between the functional polymorphism (C3435T) of the gene encoding P-glycoprotein (ABCB1) and major depressive disorder in the Japanese population. J Psychiatr Res 2012; 46: 555–559.

    Article  PubMed  Google Scholar 

  43. Kunugi H, Hori H, Adachi N, Numakawa T . Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry Clin Neurosci 2010; 64: 447–459.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Health, Instituto Carlos III, Fondo de Investigación Sanitaria (FIS) (PI041239 and ‘Sara Borrell’ contract CD09/00296 to PG); the Catalan Innovation, Universities and Enterprise Authority (grants DIUE 2009SGR1295, 2009SGR1501, 2009SGR1119); Alicia Koplowitz Foundation; and FEDER-Unión Europea. We thank Rosa Abellana for help in the statistical analysis, and the Language Advisory Service at the University of Barcelona, Spain, for manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lafuente.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassó, P., Rodríguez, N., Mas, S. et al. Effect of CYP2D6, CYP2C9 and ABCB1 genotypes on fluoxetine plasma concentrations and clinical improvement in children and adolescent patients. Pharmacogenomics J 14, 457–462 (2014). https://doi.org/10.1038/tpj.2014.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.12

This article is cited by

Search

Quick links