Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases

Abstract

We investigated whether polymorphisms in the CYP2D6 and CYP2C19 genes influence the metabolic ratios and enantiomeric S/R ratios of venlafaxine (VEN) and its metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in blood from forensic autopsy cases. In all, 94 postmortem cases found positive for VEN during toxicological screening were included. The CYP2D6 genotype was shown to significantly influence the ODV/VEN (P=0.003), DDV/NDV (P=0.010) and DDV/ODV (P=0.034) ratios. The DDV/ODV (P=0.013) and DDV/VEN (P=0.021) ratios were significantly influenced by the CYP2C19 genotype. The S/R ratios of VEN were significantly influenced by both CYP2D6 and CYP2C19 genotypes. CYP2D6 poor metabolizers (PMs) had lower S/R VEN ratios and CYP2C19 PMs had high S/R ratios of VEN in comparison. Our results show that the CYP2D6 genotype influences the O-demethylation whereas CYP2C19 influences the N-demethylation of VEN and its metabolites. In addition, we show a stereoselective metabolism where CYP2D6 favours the R-enantiomer whereas CYP2C19 favours the S-enantiomer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C . Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116: 496–526.

    Article  CAS  PubMed  Google Scholar 

  2. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A . Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldstein JA . Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52: 349–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirchheiner J, Seeringer A . Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007; 1770: 489–494.

    Article  CAS  PubMed  Google Scholar 

  5. Holmgren P, Carlsson B, Zackrisson AL, Lindblom B, Dahl ML, Scordo MG et al. Enantioselective analysis of citalopram and its metabolites in postmortem blood and genotyping for CYD2D6 and CYP2C19. J Anal Toxicol 2004; 28: 94–104.

    Article  CAS  PubMed  Google Scholar 

  6. Kingback M, Karlsson L, Zackrisson AL, Carlsson B, Josefsson M, Bengtsson F et al. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in postmortem femoral blood. Forensic Sci Int 2012; 214: 124–134.

    Article  PubMed  Google Scholar 

  7. Koski A, Sistonen J, Ojanpera I, Gergov M, Vuori E, Sajantila A . CYP2D6 and CYP2C19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int 2006; 158: 177–183.

    Article  CAS  PubMed  Google Scholar 

  8. Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A . Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int 2003; 135: 9–15.

    Article  CAS  PubMed  Google Scholar 

  9. Zackrisson AL, Holmgren P, Gladh AB, Ahlner J, Lindblom B . Fatal intoxication cases: cytochrome P450 2D6 and 2C19 genotype distributions. Eur J Clin Pharmacol 2004; 60: 547–552.

    Article  CAS  PubMed  Google Scholar 

  10. Zackrisson AL, Lindblom B, Ahlner J . High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther 2010; 88: 354–359.

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Quetglas E, Azanza JR, Sadaba B, Munoz MJ, Gil I, Campanero MA . Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol Res 2007; 55: 122–130.

    Article  CAS  PubMed  Google Scholar 

  12. Dahl ML, Tybring G, Elwin CE, Alm C, Andreasson K, Gyllenpalm M et al. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther 1994; 56: 176–183.

    Article  CAS  PubMed  Google Scholar 

  13. Begre S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Golay KP et al. Paroxetine increases steady-state concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol 2002; 22: 211–215.

    Article  CAS  PubMed  Google Scholar 

  14. Ellingrod VL, Perry PJ . Venlafaxine: a heterocyclic antidepressant. Am J Hosp Pharm 1994; 51: 3033–3046.

    CAS  PubMed  Google Scholar 

  15. Holliday SM, Benfield P . Venlafaxine. A review of its pharmacology and therapeutic potential in depression. Drugs 1995; 49: 280–294.

    Article  CAS  PubMed  Google Scholar 

  16. Muth EA, Haskins JT, Moyer JA, Husbands GE, Nielsen ST, Sigg EB . Antidepressant biochemical profile of the novel bicyclic compound Wy-45030, an ethyl cyclohexanol derivative. Biochem Pharmacol 1986; 35: 4493–4497.

    Article  CAS  PubMed  Google Scholar 

  17. Fogelman SM, Schmider J, Venkatakrishnan K, von Moltke LL, Harmatz JS, Shader RI et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999; 20: 480–490.

    Article  CAS  PubMed  Google Scholar 

  18. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM . Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–156.

    Article  CAS  PubMed  Google Scholar 

  19. Sangkuhl K, Stingl JC, Turpeinen M, Altman RB, Klein TE . PharmGKB summary: venlafaxine pathway. Pharmacogenet Genomics 2014; 24: 62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lessard E, Yessine MA, Hamelin BA, O'Hara G, LeBlanc J, Turgeon J . Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–443.

    Article  CAS  PubMed  Google Scholar 

  21. McAlpine DE, Biernacka JM, Mrazek DA, O'Kane DJ, Stevens SR, Langman LJ et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit 2011; 33: 14–20.

    Article  CAS  PubMed  Google Scholar 

  22. Eap CB, Lessard E, Baumann P, Brawand-Amey M, Yessine M-A, ÒHara G et al. Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 2003; 13: 39–47.

    Article  CAS  PubMed  Google Scholar 

  23. Hermann M, Hendset M, Fosaas K, Hjerpset M, Refsum H . Serum concentrations of venlafaxine and its metabolites O-desmethylvenlafaxine and N-desmethylvenlafaxine in heterozygous carriers of the CYP2D6*3, *4 or *5 allele. Eur J Clin Pharmacol 2008; 64: 483–487.

    Article  CAS  PubMed  Google Scholar 

  24. Shams ME, Arneth B, Hiemke C, Dragicevic A, Muller MJ, Kaiser R et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31: 493–502.

    Article  CAS  PubMed  Google Scholar 

  25. van der Weide J, van Baalen-Benedek EH, Kootstra-Ros JE . Metabolic ratios of psychotropics as indication of cytochrome P450 2D6/2C19 genotype. Ther Drug Monit 2005; 27: 478–483.

    Article  CAS  PubMed  Google Scholar 

  26. Veefkind AH, Haffmans PM, Hoencamp E . Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208.

    Article  CAS  PubMed  Google Scholar 

  27. Kingback M, Josefsson M, Karlsson L, Ahlner J, Bengtsson F, Kugelberg FC et al. Stereoselective determination of venlafaxine and its three demethylated metabolites in human plasma and whole blood by liquid chromatography with electrospray tandem mass spectrometric detection and solid phase extraction. J Pharm Biomed Anal 2010; 53: 583–590.

    Article  PubMed  Google Scholar 

  28. Zackrisson AL, Lindblom B . Identification of CYP2D6 alleles by single nucleotide polymorphism analysis using pyrosequencing. Eur J Clin Pharmacol 2003; 59: 521–526.

    Article  CAS  PubMed  Google Scholar 

  29. Howell SR, Husbands GE, Scatina JA, Sisenwine SF . Metabolic disposition of 14C-venlafaxine in mouse, rat, dog, rhesus monkey and man. Xenobiotica 1993; 23: 349–359.

    Article  CAS  PubMed  Google Scholar 

  30. Sproule BA, Hazra M, Pollock BG . Desvenlafaxine succinate for major depressive disorder. Drugs Today (Barc) 2008; 44: 475–487.

    Article  CAS  Google Scholar 

  31. Gerber JG, Rhodes RJ, Gal J . Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality 2004; 16: 36–44.

    Article  CAS  PubMed  Google Scholar 

  32. Tybring G, Bottiger Y, Widen J, Bertilsson L . Enantioselective hydroxylation of omeprazole catalyzed by CYP2C19 in Swedish white subjects. Clin Pharmacol Ther 1997; 62: 129–137.

    Article  CAS  PubMed  Google Scholar 

  33. Smith SW . Chiral toxicology: it's the same thing...only different. Toxicol Sci 2009; 110: 4–30.

    Article  CAS  PubMed  Google Scholar 

  34. Jaffe PD, Batziris HP, van der Hoeven P, DeSilva D, McIntyre IM . A study involving venlafaxine overdoses: compararsion of fatal and therapeutic concentrations in postmortem specimens. J Forensic Sci 1999; 44: 193–196.

    Article  CAS  PubMed  Google Scholar 

  35. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M et al. The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004; 37: 243–265.

    Article  CAS  PubMed  Google Scholar 

  36. Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K et al. AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 2011; 44: 195–235.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council, the Lions Research Foundation and the National Board of Forensic Medicine in Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Karlsson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlsson, L., Zackrisson, AL., Josefsson, M. et al. Influence of CYP2D6 and CYP2C19 genotypes on venlafaxine metabolic ratios and stereoselective metabolism in forensic autopsy cases. Pharmacogenomics J 15, 165–171 (2015). https://doi.org/10.1038/tpj.2014.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.50

This article is cited by

Search

Quick links