Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies

Abstract

The role of cytochrome P450 2J2 (CYP2J2) in cyclophosphamide (Cy) bioactivation was investigated in patients, cells and microsomes. Gene expression analysis showed that CYP2J2 mRNA expression was significantly (P<0.01) higher in 20 patients with hematological malignancies compared with healthy controls. CYP2J2 expression showed significant upregulation (P<0.05) during Cy treatment before stem cell transplantation. Cy bioactivation was significantly correlated to CYP2J2 expression. Studies in HL-60 cells expressing CYP2J2 showed reduced cell viability when incubated with Cy (half maximal inhibitory concentration=3.6 mM). Inhibition of CYP2J2 using telmisartan reduced Cy bioactivation by 50% and improved cell survival. Cy incubated with recombinant CYP2J2 microsomes has resulted in apparent Km and Vmax values of 3.7–6.6 mM and 2.9–10.3 pmol/(min·pmol) CYP, respectively. This is the first study demonstrating that CYP2J2 is equally important to CYP2B6 in Cy metabolism. The heart, intestine and urinary bladder express high levels of CYP2J2; local Cy bioactivation may explain Cy-treatment-related toxicities in these organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Ma J, Ramachandran S, Fiedorek FT Jr, Zeldin DC . Mapping of the CYP2J cytochrome P450 genes to human chromosome 1 and mouse chromosome 4. Genomics 1998; 49: 152–155.

    Article  CAS  PubMed  Google Scholar 

  2. Delozier TC, Kissling GE, Coulter SJ, Dai D, Foley JF, Bradbury JA et al. Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab Dispos 2007; 35: 682–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999; 285: 1276–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu X, Zhang XA, Wang DW . The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Adv Drug Deliv Rev 2011; 63: 597–609.

    Article  CAS  PubMed  Google Scholar 

  5. Hashizume T, Imaoka S, Mise M, Terauchi Y, Fujii T, Miyazaki H et al. Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes. J Pharmacol Exp Ther 2002; 300: 298–304.

    Article  CAS  PubMed  Google Scholar 

  6. Lee CA, Neul D, Clouser-Roche A, Dalvie D, Wester MR, Jiang Y et al. Identification of novel substrates for human cytochrome P450 2J2. Drug Metab Dispos 2010; 38: 347–356.

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto S, Hirama T, Matsubara T, Nagata K, Yamazoe Y . Involvement of CYP2J2 on the intestinal first-pass metabolism of antihistamine drug, astemizole. Drug Metab Dispos 2002; 30: 1240–1245.

    Article  CAS  PubMed  Google Scholar 

  8. Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH . Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci 2002; 22: 7923–7930.

    Article  CAS  PubMed  Google Scholar 

  9. Li R, Xu X, Chen C, Yu X, Edin ML, Degraff LM et al. Cytochrome P450 2J2 is protective against global cerebral ischemia in transgenic mice. Prostaglandins Other Lipid Mediat 2012; 99: 68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhatnagar A . Beating ischemia: a new feat of EETs? Circ Res 2004; 95: 443–445.

    Article  CAS  PubMed  Google Scholar 

  11. Gross GJ, Falck JR, Gross ER, Isbell M, Moore J, Nithipatikom K . Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. Cardiovasc Res 2005; 68: 18–25.

    Article  CAS  PubMed  Google Scholar 

  12. Seubert JM, Zeldin DC, Nithipatikom K, Gross GJ . Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. Prostaglandins Other Lipid Mediat 2007; 82: 50–59.

    Article  CAS  PubMed  Google Scholar 

  13. Chen C, Wei X, Rao X, Wu J, Yang S, Chen F et al. Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. J Pharmacol Exp Ther 2011; 336: 344–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie HJ, Lundgren S, Broberg U, Finnstrom N, Rane A, Hassan M . Effect of cyclophosphamide on gene expression of cytochromes p450 and beta-actin in the HL-60 cell line. Eur J Pharmacol 2002; 449: 197–205.

    Article  CAS  PubMed  Google Scholar 

  15. Freedman RS, Wang E, Voiculescu S, Patenia R, Bassett RL Jr., Deavers M et al. Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. Clin Cancer Res 2007; 13: 5736–5744.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang JG, Ning YG, Chen C, Ma D, Liu ZJ, Yang S et al. Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res 2007; 67: 6665–6674.

    Article  CAS  PubMed  Google Scholar 

  17. Chen C, Li G, Liao W, Wu J, Liu L, Ma D et al. Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. J Pharmacol Exp Ther 2009; 329: 908–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R et al. Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 2008; 299: 925–936.

    Article  CAS  PubMed  Google Scholar 

  19. Sladek NE . Metabolism of oxazaphosphorines. Pharmacol Ther 1988; 37: 301–355.

    Article  CAS  PubMed  Google Scholar 

  20. Cho JY, Lim HS, Chung JY, Yu KS, Kim JR, Shin SG et al. Haplotype structure and allele frequencies of CYP2B6 in a Korean population. Drug Metab Dispos 2004; 32: 1341–1344.

    Article  CAS  PubMed  Google Scholar 

  21. Chang TK, Weber GF, Crespi CL, Waxman DJ . Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–5637.

    CAS  PubMed  Google Scholar 

  22. Ren S, Yang JS, Kalhorn TF, Slattery JT . Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–4235.

    CAS  PubMed  Google Scholar 

  23. Binotto G, Trentin L, Semenzato G . Ifosfamide and cyclophosphamide: effects on immunosurveillance. Oncology 2003; 65 Suppl 2: 17–20.

    Article  CAS  PubMed  Google Scholar 

  24. Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD . Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008; 18: 515–523.

    Article  CAS  PubMed  Google Scholar 

  25. Raccor BS, Claessens AJ, Dinh JC, Park JR, Hawkins DS, Thomas SS et al. Potential contribution of cytochrome P450 2B6 to hepatic 4-hydroxycyclophosphamide formation in vitro and in vivo. Drug Metab Dispos 2012; 40: 54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho JY, Lim HS, Chung JY, Yu KS, Kim JR, Shin SG et al. Haplotype structure and allele frequencies of CYP2B6 in a Korean population. Drug Metab Dispos 2004; 32: 1341–1344.

    Article  CAS  PubMed  Google Scholar 

  27. Afsar NA, Ufer M, Haenisch S, Remmler C, Mateen A, Usman A et al. Relationship of drug metabolizing enzyme genotype to plasma levels as well as myelotoxicity of cyclophosphamide in breast cancer patients. Eur J Clin Pharmacol 2012; 68: 389–395.

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes BJ, Silva Cde M, Andrade JM, Matthes Ado C, Coelho EB, Lanchote VL . Pharmacokinetics of cyclophosphamide enantiomers in patients with breast cancer. Cancer Chemother Pharmacol 2011; 68: 897–904.

    Article  CAS  PubMed  Google Scholar 

  29. Xie H, Griskevicius L, Stahle L, Hassan Z, Yasar U, Rane A et al. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 2006; 27: 54–61.

    Article  CAS  PubMed  Google Scholar 

  30. Ribaudo HJ, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM et al. Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis 2006; 42: 401–407.

    Article  CAS  PubMed  Google Scholar 

  31. Tsuchiya K, Gatanaga H, Tachikawa N, Teruya K, Kikuchi Y, Yoshino M et al. Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens. Biochem Biophys Res Commun 2004; 319: 1322–1326.

    Article  CAS  PubMed  Google Scholar 

  32. Xie HJ, Yasar U, Lundgren S, Griskevicius L, Terelius Y, Hassan M et al. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J 2003; 3: 53–61.

    Article  CAS  PubMed  Google Scholar 

  33. El-Serafi I, Abedi-Valugerdi M, Potacova Z, Afsharian P, Mattsson J, Moshfegh A et al. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation. PLoS One 2014; 9: e86619.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ren S, Zeng J, Mei Y, Zhang JZ, Yan SF, Fei J et al. Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors. Drug Metab Dispos 2013; 41: 60–71.

    Article  CAS  PubMed  Google Scholar 

  35. Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, Minor L et al Cell Viability Assays, In: Sittampalam GS, Gal-Edd N, Arkin M, Auld D, Austin C, Bejcek B eds Assay Guidance Manual: Bethesda (MD), 2004.

    Google Scholar 

  36. Griskevicius L, Meurling L, Hassan M . Simple method based on fluorescent detection for the determination of 4-hydroxycyclophosphamide in plasma. Ther Drug Monit 2002; 24: 405–409.

    Article  CAS  PubMed  Google Scholar 

  37. Xie HJ, Broberg U, Griskevicius L, Lundgren S, Carlens S, Meurling L et al. Alteration of pharmacokinetics of cyclophosphamide and suppression of the cytochrome p450 genes by ciprofloxacin. Bone Marrow Transplant 2003; 31: 197–203.

    Article  CAS  PubMed  Google Scholar 

  38. Afsharian P, Mollgard L, Hassan Z, Xie H, Kimby E, Hassan M . The effect of ciprofloxacin on cyclophosphamide pharmacokinetics in patients with non-Hodgkin lymphoma. Eur J Haematol 2005; 75: 206–211.

    Article  CAS  PubMed  Google Scholar 

  39. Nagai F, Hiyoshi Y, Sugimachi K, Tamura HO . Cytochrome P450 (CYP) expression in human myeloblastic and lymphoid cell lines. Biol Pharm Bull 2002; 25: 383–385.

    Article  CAS  PubMed  Google Scholar 

  40. Yao S, Barlow WE, Albain KS, Choi JY, Zhao H, Livingston RB et al. Gene polymorphisms in cyclophosphamide metabolism pathway,treatment-related toxicity, and disease-free survival in SWOG 8897 clinical trial for breast cancer. Clin Cancer Res 2010; 16: 6169–6176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nguyen TA, Tychopoulos M, Bichat F, Zimmermann C, Flinois JP, Diry M et al. Improvement of cyclophosphamide activation by CYP2B6 mutants: from in silico to ex vivo. Mol Pharmacol 2008; 73: 1122–1133.

    Article  CAS  PubMed  Google Scholar 

  42. Xie H, Afsharian P, Terelius Y, Mirghani RA, Yasar U, Hagbjork AL et al. Cyclophosphamide induces mRNA, protein and enzyme activity of cytochrome P450 in rat. Xenobiotica 2005; 35: 239–251.

    Article  CAS  PubMed  Google Scholar 

  43. Russo F, Linsalata M, Clemente C, D'Attoma B, Orlando A, Campanella G et al. The effects of fluorouracil, epirubicin, and cyclophosphamide (FEC60) on the intestinal barrier function and gut peptides in breast cancer patients: an observational study. BMC Cancer 2013; 13: 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gharib MI, Burnett AK . Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail 2002; 4: 235–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported by grants from the Swedish Cancer Society (Cancerfonden) and the Swedish Childhood Cancer Foundation (Barncancerfonden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hassan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Serafi, I., Fares, M., Abedi-Valugerdi, M. et al. Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies. Pharmacogenomics J 15, 405–413 (2015). https://doi.org/10.1038/tpj.2014.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.82

This article is cited by

Search

Quick links