Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association studies of genomic variants with treatment response to risperidone, clozapine, quetiapine and chlorpromazine in the Chinese Han population

Abstract

Schizophrenia is a widespread mental disease with a prevalence of about 1% in the world population. Continuous long-term treatment is required to maintain social functioning and prevent symptom relapse of schizophrenia patients. However, there are considerable individual differences in response to the antipsychotic drugs. There is a pressing need to identify more drug-response-related markers. But most pharmacogenomics of schizophrenia have typically focused on a few candidate genes in small sample size. In this study, 995 subjects were selected for discovering the drug-response-related markers. A total of 77 single-nucleotide polymorphisms of 25 genes have been investigated for four commonly used antipsychotic drugs in China: risperidone, clozapine, quetiapine, and chlorpromazine. Significant associations with treatment response for several genes, such as CYP2D6, CYP2C19, COMT, ABCB1, DRD3 and HTR2C have been verified in our study. Also, we found several new candidate genes (TNIK, RELN, NOTCH4 and SLC6A2) and combinations (haplotype rs1544325–rs5993883–rs6269–rs4818 in COMT) that are associated with treatment response to the four drugs. Also, multivariate interactions analysis demonstrated the combination of rs6269 in COMT and rs3813929 in HTR2C may work as a predictor to improve the clinical antipsychotic response. So our study is of great significance to improve current knowledge on the pharmacogenomics of schizophrenia, thus promoting the implementation of personalized medicine in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wyatt RJ . Neuroleptics and the natural course of schizophrenia. Schizophr Bull 1991; 17: 325–351.

    Article  CAS  PubMed  Google Scholar 

  2. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  PubMed  Google Scholar 

  3. van Os J, Kapur S . Schizophrenia. Lancet 2009; 374: 635–645.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang JP, Malhotra AK . Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 2011; 7: 9–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu Q, Wu X, Xiong Y, Xing Q, He L, Qin S . Pharmacogenomics can improve antipsychotic treatment in schizophrenia. Front Med 2013; 7: 180–190.

    Article  PubMed  Google Scholar 

  6. Yamanouchi Y, Iwata N, Suzuki T, Kitajima T, Ikeda M, Ozaki N . Effect of DRD2, 5-HT2A, and COMT genes on antipsychotic response to risperidone. Pharmacogenomics J 2003; 3: 356–361.

    Article  CAS  PubMed  Google Scholar 

  7. Gao S, Hu Z, Cheng J, Zhou W, Xu Y, Xie S et al. Impact of catechol-O-methyltransferase polymorphisms on risperidone treatment for schizophrenia and its potential clinical significance. Clin Biochem 2012; 45: 787–792.

    Article  CAS  PubMed  Google Scholar 

  8. Brennan MD . Pharmacogenetics of second-generation antipsychotics. Pharmacogenomics 2014; 15: 869–884.

    Article  CAS  PubMed  Google Scholar 

  9. McClay JL, Adkins DE, Aberg K, Bukszar J, Khachane AN, Keefe RS et al. Genome-wide pharmacogenomic study of neurocognition as an indicator of antipsychotic treatment response in schizophrenia. Neuropsychopharmacology 2011; 36: 616–626.

    Article  CAS  PubMed  Google Scholar 

  10. McClay JL, Adkins DE, Aberg K, Stroup S, Perkins DO, Vladimirov VI et al. Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry 2011; 16: 76–85.

    Article  CAS  PubMed  Google Scholar 

  11. Clark SL, Souza RP, Adkins DE, Aberg K, Bukszar J, McClay JL et al. Genome-wide association study of patient-rated and clinician-rated global impression of severity during antipsychotic treatment. Pharmacogenetics Genomics 2013; 23: 69–77.

    Article  CAS  PubMed  Google Scholar 

  12. Arranz MJ, Munro J, Birkett J, Bolonna A, Mancama D, Sodhi M et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 355: 1615–1616.

    Article  CAS  PubMed  Google Scholar 

  13. Sun YV . Integration of biological networks and pathways with genetic association studies. Hum Genet 2012; 131: 1677–1686.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Atias N, Istrail S, Sharan R . Pathway-based analysis of genomic variation data. Curr Opin Genet Dev 2013; 23: 622–626.

    Article  CAS  PubMed  Google Scholar 

  15. Purcell S, Cherny SS, Sham PC . Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  PubMed  Google Scholar 

  16. Shi YY, He L . SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci (vol 15, pg 97, 2005). Cell Res 2006; 16: 851–851.

    Article  CAS  Google Scholar 

  17. Hahn LW, Ritchie MD, Moore JH . Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003; 19: 376–382.

    Article  CAS  PubMed  Google Scholar 

  18. Qin S, Zhao X, Pan Y, Liu J, Feng G, Fu J et al. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur J Hum Genet 2005; 13: 807–814.

    Article  CAS  PubMed  Google Scholar 

  19. Su MW, Tung KY, Liang PH, Tsai CH, Kuo NW, Lee YL . Gene-gene and gene-environmental interactions of childhood asthma: a multifactor dimension reduction approach. PLoS One 2012; 7: e30694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Groot MJ, Wakenhut F, Whitlock G, Hyland R . Understanding CYP2D6 interactions. Drug Discov Today 2009; 14: 964–972.

    Article  CAS  PubMed  Google Scholar 

  21. Lee ST, Ryu S, Kim SR, Kim MJ, Kim S, Kim JW et al. Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response. J Clin Psychopharmacol 2012; 32: 441–448.

    Article  CAS  PubMed  Google Scholar 

  22. Tsai M-H, Lin K-M, Hsiao M-C, Shen WW, Lu M-L, Tang H-S et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics 2010; 11: 537–546.

    Article  CAS  PubMed  Google Scholar 

  23. Lee S-T, Ryu S, Kim S-R, Kim M-J, Kim S, Kim J-W et al. Association study of 27 annotated genes for clozapine pharmacogenetics: validation of preexisting studies and identification of a new candidate gene, ABCB1, for treatment response. J Clin Psychopharmacol 2012; 32: 441–448.

    Article  CAS  PubMed  Google Scholar 

  24. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE . Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 2003; 23: 2008–2013.

    Article  CAS  PubMed  Google Scholar 

  25. Chen JS, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004; 75: 807–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shield AJ, Thomae BA, Eckloff BW, Wieben ED, Weinshilboum RM . Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes. Mol Psychiatry 2004; 9: 151–160.

    Article  CAS  PubMed  Google Scholar 

  27. Woodward ND, Jayathilake K, Meltzer HY . COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 2007; 90: 86–96.

    Article  PubMed  Google Scholar 

  28. Chen X, Wang X, O'Neill AF, Walsh D, Kendler KS . Variants in the catechol-O-methyltransferase (COMT) gene are associated with schizophrenia in Irish high-density families. Mol Psychiatry 2004; 9: 962–967.

    Article  CAS  PubMed  Google Scholar 

  29. Goghari VM, Sponheim SR . Differential association of the COMT Val15Met polymorphism with clinical phenotypes in schizophrenia and bipolar disorder. Schizophr Res 2008; 103: 186–191.

    Article  PubMed  Google Scholar 

  30. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val(108/158) Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  Google Scholar 

  31. Molero P, Ortuno F, Zalacain M, Patino-Garcia A . Clinical involvement of catechol-O-methyltransferase polymorphisms in schizophrenia spectrum disorders: influence on the severity of psychotic symptoms and on the response to neuroleptic treatment. Pharmacogenomics J 2007; 7: 418–426.

    Article  CAS  PubMed  Google Scholar 

  32. Illi A, Kampman O, Hanninen K, Anttila S, Mattila KM, Katila H et al. Catechol-O-methyltransferase val108/158met genotype and response to antipsychotic medication in schizophrenia. Hum Psychopharm Clin 2007; 22: 211–215.

    Article  CAS  Google Scholar 

  33. Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana LS, Egan MF et al. Catechol-O-methyltransferase Val(108/158)Met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 2004; 56: 677–682.

    Article  CAS  PubMed  Google Scholar 

  34. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  Google Scholar 

  35. Harris SL, Gil G, Robins H, Hu WW, Hirshfield K, Bond E et al. Detection of functional single-nucleotide polymorphisms that affect apoptosis. Proc Natl Acad Sci USA 2005; 102: 16297–16302.

    Article  CAS  PubMed  Google Scholar 

  36. Tan HY, Chen AG, Kolachana B, Apud JA, Mattay VS, Callicott JH et al. Effective connectivity of AKT1-mediated dopaminergic working memory networks and pharmacogenetics of anti-dopaminergic treatment. Brain 2012; 135: 1436–1445.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xu MQ, Xing QH, Zheng YL, Li S, Gao JJ, He G et al. Association of AKT1 gene polymorphisms with risk of schizophrenia and with response to antipsychotics in the Chinese population. J Clin Psychiatry 2007; 68: 1358–1367.

    Article  CAS  PubMed  Google Scholar 

  38. Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry 2008; 63: 449–457.

    Article  CAS  PubMed  Google Scholar 

  39. Schwab SG, Hoefgen B, Hanses C, Hassenbach MB, Albus M, Lerer B et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 2005; 58: 446–450.

    Article  CAS  PubMed  Google Scholar 

  40. Norton N, Williams HJ, Dwyer S, Carroll L, Peirce T, Moskvina V et al. Association analysis of AKT1 and schizophrenia in a UK case control sample. Schizophr Res 2007; 93: 58–65.

    Article  PubMed  Google Scholar 

  41. Kumarasinghe N, Beveridge NJ, Gardiner E, Scott RJ, Yasawardene S, Perera A et al. Gene expression profiling in treatment-naive schizophrenia patients identifies abnormalities in biological pathways involving AKT1 that are corrected by antipsychotic medication. Int J Neuropsychopharmacol 2013; 16: 1483–1503.

    Article  CAS  PubMed  Google Scholar 

  42. Blasi G, Napolitano F, Ursini G, Taurisano P, Romano R, Caforio G et al. DRD2/AKT1 interaction on D2 c-AMP independent signaling, attentional processing, and response to olanzapine treatment in schizophrenia. Proc Natl Acad Sci USA 2011; 108: 1158–1163.

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda M, Yamanouchi Y, Kinoshita Y, Kitajima T, Yoshimura R, Hashimoto S et al. Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics 2008; 9: 1437–1443.

    Article  CAS  PubMed  Google Scholar 

  44. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17: 887–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull 2009; 35: 96–108.

    Article  PubMed  Google Scholar 

  46. Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, Crozier RA et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry 2011; 16: 1006–1023.

    Article  CAS  PubMed  Google Scholar 

  47. Andreasen NC, Wilcox MA, Ho BC, Epping E, Ziebell S, Zeien E et al. Statistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes. Mol Psychiatry 2012; 17: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  48. Tost H, Weinberger DR . RELN rs7341475 and schizophrenia risk: confusing, yet somehow intriguing. Biol Psychiatry 2011; 69: e19.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wedenoja J, Tuulio-Henriksson A, Suvisaari J, Loukola A, Paunio T, Partonen T et al. Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biol Psychiatry 2010; 67: 983–991.

    Article  CAS  PubMed  Google Scholar 

  50. Yang XB, Kang C, Liu H, Yang J . Association study of the reelin (RELN) gene with Chinese Va schizophrenia. Psychiatr Genet 2013; 23: 138.

    Article  PubMed  Google Scholar 

  51. Aberg KA, Liu Y, Bukszar J, McClay JL, Khachane AN, Andreassen OA et al. A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry 2013; 70: 573–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ikeda M, Aleksic B, Yamada K, Iwayama-Shigeno Y, Matsuo K, Numata S et al. Genetic evidence for association between NOTCH4 and schizophrenia supported by a GWAS follow-up study in a Japanese population. Mol Psychiatry 2013; 18: 636–638.

    Article  CAS  PubMed  Google Scholar 

  53. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al. Complex promoter and coding region beta(2)-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 97: 10483–10488.

    Article  CAS  PubMed  Google Scholar 

  55. Gupta M, Bhatnagar P, Grover S, Kaur H, Baghel R, Bhasin Y et al. Association studies of catechol-O-methyltransferase (COMT) gene with schizophrenia and response to antipsychotic treatment. Pharmacogenomics 2009; 10: 385–397.

    Article  CAS  PubMed  Google Scholar 

  56. Ritchie MD, Haas DW, Motsinger AA, Donahue JP, Erdem H, Raffanti S et al. Drug transporter and metabolizing enzyme gene variants and nonnucleoside reverse-transcriptase inhibitor hepatotoxicity. Clin Infect Dis 2006; 43: 779–782.

    Article  CAS  PubMed  Google Scholar 

  57. Spina E, Avenoso A, Salemi M, Facciola G, Scordo MG, Ancione M et al. Plasma concentrations of clozapine and its major metabolites during combined treatment with paroxetine or sertraline. Pharmacopsychiatry 2000; 33: 213–217.

    Article  CAS  PubMed  Google Scholar 

  58. Centorrino F, Baldessarini RJ, Frankenburg FR, Kando J, Volpicelli SA, Flood JG . Serum levels of clozapine and norclozapine in patients treated with selective serotonin reuptake inhibitors. Am J Psychiatry 1996; 153: 820–822.

    Article  CAS  PubMed  Google Scholar 

  59. Olesen OV, Linnet K . Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol 2001; 41: 823–832.

    Article  CAS  PubMed  Google Scholar 

  60. Melkersson KI, Scordo MG, Gunes A, Dahl ML . Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry 2007; 68: 697–704.

    Article  CAS  PubMed  Google Scholar 

  61. Jaquenoud Sirot E, Knezevic B, Morena GP, Harenberg S, Oneda B, Crettol S et al. ABCB1 and cytochrome P450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol 2009; 29: 319–326.

    Article  CAS  PubMed  Google Scholar 

  62. Kakihara S, Yoshimura R, Shinkai K, Matsumoto C, Goto M, Kaji K et al. Prediction of response to risperidone treatment with respect to plasma concencentrations of risperidone, catecholamine metabolites, and polymorphism of cytochrome P450 2D6. Int Clin Psychopharmacol 2005; 20: 71–78.

    Article  PubMed  Google Scholar 

  63. Altar CA, Hornberger J, Shewade A, Cruz V, Garrison J, Mrazek D . Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry 2013; 25: 509–533.

    Article  PubMed  Google Scholar 

  64. Bertolino A, Caforio G, Blasi G, De Candia M, Latorre V, Petruzzella V et al. Interaction of COMT Val(108/158) met genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 2004; 161: 1798–1805.

    Article  PubMed  Google Scholar 

  65. Zhao QZ, Liu BC, Zhang J, Wang L, Li XW, Wang Y et al. Association between a COMT polymorphism and clinical response to risperidone treatment: a pharmacogenetic study. Psychiatr Genet 2012; 22: 298–299.

    Article  CAS  PubMed  Google Scholar 

  66. Fijal BA, Kinon BJ, Kapur S, Stauffer VL, Conley RR, Jamal HH et al. Candidate-gene association analysis of response to risperidone in African-American and white patients with schizophrenia. Pharmacogenomics J 2009; 9: 311–318.

    Article  CAS  PubMed  Google Scholar 

  67. Illi A, Kampman O, Anttila S, Roivas M, Mattila KM, Lehtimaki T et al. Interaction between angiotensin-converting enzyme and catechol-O-methyltransferase genotypes in schizophrenics with poor response to conventional neuroleptics. Eur Neuropsychopharmacol 2003; 13: 147–151.

    Article  CAS  PubMed  Google Scholar 

  68. Consoli G, Lastella M, Ciapparelli A, Catena Dell'Osso M, Ciofi L, Guidotti E et al. ABCB1 polymorphisms are associated with clozapine plasma levels in psychotic patients. Pharmacogenomics 2009; 10: 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  69. Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L . Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res 2008; 42: 89–97.

    Article  PubMed  Google Scholar 

  70. Vijayan NN, Mathew A, Balan S, Natarajan C, Nair CM, Allencherry PM et al. Antipsychotic drug dosage and therapeutic response in schizophrenia is influenced by ABCB1 genotypes: a study from a south Indian perspective. Pharmacogenomics 2012; 13: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  71. Xing Q, Gao R, Li H, Feng G, Xu M, Duan S et al. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics 2006; 7: 987–993.

    Article  CAS  PubMed  Google Scholar 

  72. Meary A, Brousse G, Jamain S, Schmitt A, Szoke A, Schurhoff F et al. Pharmacogenetic study of atypical antipsychotic drug response: involvement of the norepinephrine transporter gene. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 491–494.

    Article  CAS  PubMed  Google Scholar 

  73. Scharfetter J, Chaudhry HR, Hornik K, Fuchs K, Sieghart W, Kasper S et al. Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakastani patients. Eur Neuropsychopharmacol 1999; 10: 17–20.

    Article  CAS  PubMed  Google Scholar 

  74. Vehof J, Burger H, Wilffert B, Al Hadithy A, Alizadeh BZ, Snieder H . Clinical response to antipsychotic drug treatment: association study of polymorphisms in six candidate genes. Eur Neuropsychopharmacol 2012; 22: 625–631.

    Article  CAS  PubMed  Google Scholar 

  75. Adams DH, Close S, Farmen M, Downing AM, Breier A, Houston JP . Dopamine receptor D3 genotype association with greater acute positive symptom remission with olanzapine therapy in predominately caucasian patients with chronic schizophrenia or schizoaffective disorder. Hum Psychopharmacol 2008; 23: 267–274.

    Article  CAS  PubMed  Google Scholar 

  76. Daskalakis ZJ, George TP . Clozapine, GABA(B), and the treatment of resistant schizophrenia. Clin Pharmacol Ther 2009; 86: 442–446.

    Article  CAS  PubMed  Google Scholar 

  77. Hwang R, Zai C, Tiwari A, Muller DJ, Arranz MJ, Morris AG et al. Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. Pharmacogenomics J 2010; 10: 200–218.

    Article  CAS  PubMed  Google Scholar 

  78. Xuan J, Zhao X, He G, Yu L, Wang L, Tang W et al. Effects of the dopamine D3 receptor (DRD3) gene polymorphisms on risperidone response: a pharmacogenetic study. Neuropsychopharmacology 2008; 33: 305–311.

    Article  CAS  PubMed  Google Scholar 

  79. Barlas IO, Cetin M, Erdal ME, Semiz UB, Basoglu C, Ay ME et al. Lack of association between DRD3 gene polymorphism and response to clozapine in Turkish schizoprenia patients. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 56–60.

    Article  CAS  PubMed  Google Scholar 

  80. Sodhi MS, Arranz MJ, Curtis D, Ball DM, Sham P, Roberts GW et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport 1995; 7: 169–172.

    Article  CAS  PubMed  Google Scholar 

  81. Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z . Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol 2005; 15: 143–151.

    Article  CAS  PubMed  Google Scholar 

  82. Liu BC, Zhang J, Wang L, Li XW, Wang Y, Wei ZY et al. HTR2C promoter polymorphisms are associated with risperidone efficacy in Chinese female patients. Pharmacogenomics 2010; 11: 685–692.

    Article  CAS  PubMed  Google Scholar 

  83. Rietschel M, Naber D, Fimmers R, Moller HJ, Propping P, Nothen MM . Efficacy and side-effects of clozapine not associated with variation in the 5-HT2C receptor. Neuroreport 1997; 8: 1999–2003.

    Article  CAS  PubMed  Google Scholar 

  84. Klemettila JP, Kampman O, Seppala N, Viikki M, Hamalainen M, Moilanen E et al. Association study of the HTR2C, leptin and adiponectin genes and serum marker analyses in clozapine treated long-term patients with schizophrenia. Eur Psychiatry 2014; 30: 296–302.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the 863 Program (2012AA02A515, 2012AA021802), the 973 Program (2010CB529600), the National Key Technology R&D Program (2012BAI01B09), the National Nature Science Foundation of China (81121001, 81273596, J1210047, 30900799, 30972823, 81171272), Public Science and Technology Research Funds (201210056), the Shanghai Jiaotong University Interdisciplinary Research fund and the Shanghai Leading Academic Discipline Project (B205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Qin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Wu, X., Li, M. et al. Association studies of genomic variants with treatment response to risperidone, clozapine, quetiapine and chlorpromazine in the Chinese Han population. Pharmacogenomics J 16, 357–365 (2016). https://doi.org/10.1038/tpj.2015.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.61

This article is cited by

Search

Quick links