Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genotype-guided tacrolimus dosing in African-American kidney transplant recipients

Abstract

Tacrolimus is dependent on CYP3A5 enzyme for metabolism. Expression of the CYP3A5 enzyme is controlled by several alleles including CYP3A5*1, CYP3A5*3, CYP3A5*6 and CYP3A5*7. African Americans (AAs) have on average higher tacrolimus dose requirements than Caucasians; however, some have requirements similar to Caucasians. Studies in AAs have primarily evaluated the CYP3A5*3 variant; however, there are other common nonfunctional variants in AAs (CYP3A5*6 and CYP3A5*7) that do not occur in Caucasians. These variants are associated with lower dose requirements and may explain why some AAs are metabolically similar to Caucasians. We created a tacrolimus clearance model in 354 AAs using a development and validation cohort. Time after transplant, steroid and antiviral use, age and CYP3A5*1, *3, *6 and *7 alleles were significant toward clearance. This study is the first to develop an AA-specific genotype-guided tacrolimus dosing model to personalize therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. McCullough KP, Keith DS, Meyer KH, Stock PG, Brayman KL, Leichtman AB . Kidney and pancreas transplantation in the United States, 1998-2007: access for patients with diabetes and end-stage renal disease. Am J Transplant 2009; 9: 894–906.

    Article  CAS  PubMed  Google Scholar 

  2. Matas AJ, Smith JM, Skeans MA, Thompson B, Gustafson SK, Schnitzler MA et al. OPTN/SRTR 2012 Annual Data Report: kidney. Am J Transplant 2014; 14 (Suppl 1): 11–44.

    Article  PubMed  Google Scholar 

  3. Fan PY, Ashby VB, Fuller DS, Boulware LE, Kao A, Norman SP et al. Access and outcomes among minority transplant patients, 1999-2008, with a focus on determinants of kidney graft survival. Am J Transplant 2010; 10: 1090–1107.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gondos A, Dohler B, Brenner H, Opelz G . Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation 2013; 95: 267–274.

    Article  PubMed  Google Scholar 

  5. Press R, Carrasquillo O, Nickolas T, Radhakrishnan J, Shea S, Barr RG . Race/ethnicity, poverty status, and renal transplant outcomes. Transplantation 2005; 80: 917–924.

    Article  PubMed  Google Scholar 

  6. Young CJ, Gaston RS . Renal transplantation in black Americans. N Engl J Med 2000; 343: 1545–1552.

    Article  CAS  PubMed  Google Scholar 

  7. Eckhoff DE, Young CJ, Gaston RS, Fineman SW, Deierhoi MH, Foushee MT et al. Racial disparities in renal allograft survival: a public health issue? J Am Coll Surg 2007; 204: 894–902.

    Article  PubMed  Google Scholar 

  8. Martins D, Tareen N, Norris KC . The epidemiology of end-stage renal disease among African Americans. Am J Med Sci 2002; 323: 65–71.

    Article  CAS  PubMed  Google Scholar 

  9. de Jonge H, Naesens M, Kuypers DR . New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit 2009; 31: 416–435.

    Article  CAS  PubMed  Google Scholar 

  10. Kahan BD, Keown P, Levy GA, Johnston A . Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther 2002; 24: 330–350.

    Article  CAS  PubMed  Google Scholar 

  11. Kershner RP, Fitzsimmons WE . Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. Transplantation 1996; 62: 920–926.

    Article  CAS  PubMed  Google Scholar 

  12. McMaster P, Mirza DF, Ismail T, Vennarecci G, Patapis P, Mayer AD . Therapeutic drug monitoring of tacrolimus in clinical transplantation. Ther Drug Monit 1995; 17: 602–605.

    Article  CAS  PubMed  Google Scholar 

  13. Monchaud C, Marquet P . Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part I. Clin Pharmacokinet 2009; 48: 419–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Staatz CE, Tett SE . Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43: 623–653.

    Article  CAS  PubMed  Google Scholar 

  15. Shaw LM, Holt DW, Keown P, Venkataramanan R, Yatscoff RW . Current opinions on therapeutic drug monitoring of immunosuppressive drugs. Clin Ther 1999; 21: 1632–1652.

    Article  CAS  PubMed  Google Scholar 

  16. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 1995; 29: 404–430.

    Article  CAS  PubMed  Google Scholar 

  17. Staatz C, Taylor P, Tett S . Low tacrolimus concentrations and increased risk of early acute rejection in adult renal transplantation. Nephrol Dial Transplant 2001; 16: 1905–1909.

    Article  CAS  PubMed  Google Scholar 

  18. Undre NA, van Hooff J, Christiaans M, Vanrenterghem Y, Donck J, Heeman U et al. Low systemic exposure to tacrolimus correlates with acute rejection. Transplant Proc 1999; 31: 296–298.

    Article  CAS  PubMed  Google Scholar 

  19. Dirks NL, Huth B, Yates CR, Meibohm B . Pharmacokinetics of immunosuppressants: a perspective on ethnic differences. Int J Clin Pharmacol Ther 2004; 42: 701–718.

    Article  CAS  PubMed  Google Scholar 

  20. Fitzsimmons WE, Bekersky I, Dressler D, Raye K, Hodosh E, Mekki Q . Demographic considerations in tacrolimus pharmacokinetics. Transplant Proc 1998; 30: 1359–1364.

    Article  CAS  PubMed  Google Scholar 

  21. Mancinelli LM, Frassetto L, Floren LC, Dressler D, Carrier S, Bekersky I et al. The pharmacokinetics and metabolic disposition of tacrolimus: a comparison across ethnic groups. Clin Pharmacol Ther 2001; 69: 24–31.

    Article  CAS  PubMed  Google Scholar 

  22. Hricik DE, Anton HA, Knauss TC, Rodriguez V, Seaman D, Siegel C et al. Outcomes of African American kidney transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. Transplantation 2002; 74: 189–193.

    Article  CAS  PubMed  Google Scholar 

  23. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 2011; 91: 300–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andrews PA, Sen M, Chang RW . Racial variation in dosage requirements of tacrolimus. Lancet 1996; 348: 1446.

    Article  CAS  PubMed  Google Scholar 

  25. Beermann KJ, Ellis MJ, Sudan DL, Harris MT . Tacrolimus dose requirements in African-American and Caucasian kidney transplant recipients on mycophenolate and prednisone. Clin Transplant 2014; 28: 762–767.

    Article  CAS  PubMed  Google Scholar 

  26. Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant 2012; 12: 3326–3336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laftavi MR, Pankewycz O, Patel S, Nader N, Kohli R, Feng L et al. African American renal transplant recipients (RTR) require higher tacrolimus doses to achieve target levels compared to white RTR: does clotrimazole help? Transplant Proc 2013; 45: 3498–3501.

    Article  CAS  PubMed  Google Scholar 

  28. Narayanan M, Pankewycz O, El-Ghoroury M, Shihab F, Wiland A, McCague K et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. Transplantation 2013; 95: 566–572.

    Article  CAS  PubMed  Google Scholar 

  29. Vadivel N, Garg A, Holt DW, Chang RW, MacPhee IA . Tacrolimus dose in black renal transplant recipients. Transplantation 2007; 83: 997–999.

    Article  PubMed  Google Scholar 

  30. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB . PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics 2013; 23: 563–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamdem LK, Streit F, Zanger UM, Brockmoller J, Oellerich M, Armstrong VW et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005; 51: 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  32. Hebert MF . Contributions of hepatic and intestinal metabolism and P-glycoprotein to cyclosporine and tacrolimus oral drug delivery. Adv Drug Deliv Rev 1997; 27: 201–214.

    Article  CAS  PubMed  Google Scholar 

  33. Jeong H, Chiou WL . Role of P-glycoprotein in the hepatic metabolism of tacrolimus. Xenobiotica 2006; 36: 1–13.

    Article  CAS  PubMed  Google Scholar 

  34. Birdwell KA, Grady B, Choi L, Xu H, Bian A, Denny JC et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet Genomics 2012; 22: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Jonge H, Metalidis C, Naesens M, Lambrechts D, Kuypers DR . The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics 2011; 12: 1281–1291.

    Article  CAS  PubMed  Google Scholar 

  36. Elens L, Hesselink DA, Bouamar R, Budde K, de Fijter JW, De Meyer M et al. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients. Ther Drug Monit 2014; 36: 71–79.

    CAS  PubMed  Google Scholar 

  37. Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH . CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics 2013; 14: 47–62.

    Article  CAS  PubMed  Google Scholar 

  38. Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 2011; 12: 1383–1396.

    Article  CAS  PubMed  Google Scholar 

  39. Gomez-Bravo MA, Salcedo M, Fondevila C, Suarez F, Castellote J, Rufian S et al. Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients. J Clin Pharmacol 2013; 53: 1146–1154.

    CAS  PubMed  Google Scholar 

  40. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T . The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 2014; 53: 123–139.

    Article  CAS  PubMed  Google Scholar 

  41. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kuypers DR, de Loor H, Naesens M, Coopmans T, de Jonge H . Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenet Genomics 2014; 24: 597–606.

    Article  CAS  PubMed  Google Scholar 

  43. Macphee IA, Fredericks S, Mohamed M, Moreton M, Carter ND, Johnston A et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation 2005; 79: 499–502.

    Article  CAS  PubMed  Google Scholar 

  44. Pallet N, Jannot AS, El Bahri M, Etienne I, Buchler M, de Ligny BH et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. Am J Transplant 2015; 15: 800–805.

    Article  CAS  PubMed  Google Scholar 

  45. Busi F, Cresteil T . CYP3A5 mRNA degradation by nonsense-mediated mRNA decay. Mol Pharmacol 2005; 68: 808–815.

    CAS  PubMed  Google Scholar 

  46. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001; 11: 773–779.

    Article  CAS  PubMed  Google Scholar 

  47. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  48. de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR . Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism. Pharmacogenomics 2013; 14: 1467–1480.

    Article  CAS  PubMed  Google Scholar 

  49. Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA . Dosing equation for tacrolimus using genetic variants and clinical factors. Br J Clin Pharmacol 2011; 72: 948–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rojas L, Neumann I, Herrero MJ, Boso V, Reig J, Poveda JL et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J 2014; 15: 38–48.

    Article  CAS  PubMed  Google Scholar 

  51. Vannaprasaht S, Reungjui S, Supanya D, Sirivongs D, Pongskul C, Avihingsanon Y et al. Personalized tacrolimus doses determined by CYP3A5 genotype for induction and maintenance phases of kidney transplantation. Clin Ther 2013; 35: 1762–1769.

    Article  CAS  PubMed  Google Scholar 

  52. Roy JN, Barama A, Poirier C, Vinet B, Roger M . Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics 2006; 16: 659–665.

    Article  CAS  PubMed  Google Scholar 

  53. Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003; 13: 461–472.

    Article  CAS  PubMed  Google Scholar 

  54. Haufroid V, Wallemacq P, VanKerckhove V, Elens L, De Meyer M, Eddour DC et al. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006; 6: 2706–2713.

    Article  CAS  PubMed  Google Scholar 

  55. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74: 245–254.

    Article  CAS  PubMed  Google Scholar 

  56. Lopez-Montenegro Soria MA, Kanter Berga J, Beltran Catalan S, Milara Paya J, Pallardo Mateu LM, Jimenez Torres NV . Genetic polymorphisms and individualized tacrolimus dosing. Transplant Proc 2010; 42: 3031–3033.

    Article  CAS  PubMed  Google Scholar 

  57. Santoro A, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Struchiner CJ, Ojopi EB et al. Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics 2011; 12: 1293–1303.

    Article  CAS  PubMed  Google Scholar 

  58. Santoro AB, Struchiner CJ, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Suarez-Kurtz G . CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients. Clin Pharmacol Ther 2013; 94: 201–202.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng S, Tasnif Y, Hebert MF, Davis CL, Shitara Y, Calamia JC et al. Measurement and compartmental modeling of the effect of CYP3A5 gene variation on systemic and intrarenal tacrolimus disposition. Clin Pharmacol Ther 2012; 92: 737–745.

    Article  CAS  PubMed  Google Scholar 

  60. Oetting W, Schaldt D, Guan W, Israni A, Remmel R, Dorr C et al. Identification of genetic variants associated with variation of tacrolimus levels in African Americans using GWAS. Am J Transplant 2015; doi: 10.1111/ajt.13495; e-pub ahead of print.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pulk R, Schladt D, Guan W, Oetting W, Israni A, Matas A et al. Multi-gene pharmacogenomics of tacrolimus troughs in kidney transplant recipients. Pharmacogenomics 2014; 16: 841–854.

    Article  CAS  Google Scholar 

  62. Li YR, van Setten J, Verma SS, Lu Y, Holmes MV, Gao H et al. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Med 2015; 7: 90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  CAS  PubMed  Google Scholar 

  64. Thompson EE, Kuttab-Boulos H, Witonsky D, Yang L, Roe BA, Di Rienzo A . CYP3A variation and the evolution of salt-sensitivity variants. Am J Hum Genet 2004; 75: 1059–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang J, Zhang X, Liu L, Tong W . Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplant Proc 2010; 42: 3459–3464.

    Article  CAS  PubMed  Google Scholar 

  66. Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos 2005; 33: 884–887.

    Article  CAS  PubMed  Google Scholar 

  67. Lee SJ, Goldstein JA . Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics 2005; 6: 357–371.

    Article  CAS  PubMed  Google Scholar 

  68. Bergmann TK, Hennig S, Barraclough KA, Isbel NM, Staatz CE . Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose. Ther Drug Monit 2014; 36: 62–70.

    CAS  PubMed  Google Scholar 

  69. Staatz CE, Willis C, Taylor PJ, Lynch SV, Tett SE . Toward better outcomes with tacrolimus therapy: population pharmacokinetics and individualized dosage prediction in adult liver transplantation. Liver Transpl 2003; 9: 130–137.

    Article  PubMed  Google Scholar 

  70. Staatz CE, Willis C, Taylor PJ, Tett SE . Population pharmacokinetics of tacrolimus in adult kidney transplant recipients. Clin Pharmacol Ther 2002; 72: 660–669.

    Article  CAS  PubMed  Google Scholar 

  71. Han N, Ha S, Yun HY, Kim MG, Min SI, Ha J et al. Population pharmacokinetic-pharmacogenetic model of tacrolimus in the early period after kidney transplantation. Basic Clin Pharmacol Toxicol 2014; 114: 400–406.

    Article  CAS  PubMed  Google Scholar 

  72. Bains RK, Kovacevic M, Plaster CA, Tarekegn A, Bekele E, Bradman NN et al. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa. BMC Genet 2013; 14: 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jin Y, Wang YH, Miao J, Li L, Kovacs RJ, Marunde R et al. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin Pharmacol Ther 2007; 82: 579–585.

    Article  CAS  PubMed  Google Scholar 

  74. Dennison JB, Mohutsky MA, Barbuch RJ, Wrighton SA, Hall SD . Apparent high CYP3A5 expression is required for significant metabolism of vincristine by human cryopreserved hepatocytes. J Pharmacol Exp Ther 2008; 327: 248–257.

    Article  CAS  PubMed  Google Scholar 

  75. Floyd MD, Gervasini G, Masica AL, Mayo G, George AL Jr, Bhat K et al. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 2003; 13: 595–606.

    Article  CAS  PubMed  Google Scholar 

  76. Miao J, Jin Y, Marunde RL, Gorski CJ, Kim S, Quinney S et al. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenomics J 2009; 9: 319–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mirghani RA, Sayi J, Aklillu E, Allqvist A, Jande M, Wennerholm A et al. CYP3A5 genotype has significant effect on quinine 3-hydroxylation in Tanzanians, who have lower total CYP3A activity than a Swedish population. Pharmacogenet Genomics 2006; 16: 637–645.

    Article  CAS  PubMed  Google Scholar 

  78. Mukonzo JK, Waako P, Ogwal-Okeng J, Gustafsson LL, Aklillu E . Genetic variations in ABCB1 and CYP3A5 as well as sex influence quinine disposition among Ugandans. Ther Drug Monit 2010; 32: 346–352.

    Article  CAS  PubMed  Google Scholar 

  79. Roberts PJ, Rollins KD, Kashuba AD, Paine MF, Nelsen AC, Williams EE et al. The influence of CYP3A5 genotype on dexamethasone induction of CYP3A activity in African Americans. Drug Metab Dispos 2008; 36: 1465–1469.

    Article  CAS  PubMed  Google Scholar 

  80. Antignac M, Hulot JS, Boleslawski E, Hannoun L, Touitou Y, Farinotti R et al. Population pharmacokinetics of tacrolimus in full liver transplant patients: modelling of the post-operative clearance. Eur J Clin Pharmacol 2005; 61: 409–416.

    Article  CAS  PubMed  Google Scholar 

  81. Fukatsu S, Yano I, Igarashi T, Hashida T, Takayanagi K, Saito H et al. Population pharmacokinetics of tacrolimus in adult recipients receiving living-donor liver transplantation. Eur J Clin Pharmacol 2001; 57: 479–484.

    Article  CAS  PubMed  Google Scholar 

  82. Eeckhoudt SL, Horsmans Y, Verbeeck RK . Differential induction of midazolam metabolism in the small intestine and liver by oral and intravenous dexamethasone pretreatment in rat. Xenobiotica 2002; 32: 975–984.

    Article  CAS  PubMed  Google Scholar 

  83. Hukkanen J, Vaisanen T, Lassila A, Piipari R, Anttila S, Pelkonen O et al. Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther 2003; 304: 745–752.

    Article  CAS  PubMed  Google Scholar 

  84. Ogg MS, Williams JM, Tarbit M, Goldfarb PS, Gray TJ, Gibson GG . A reporter gene assay to assess the molecular mechanisms of xenobiotic-dependent induction of the human CYP3A4 gene in vitro. Xenobiotica 1999; 29: 269–279.

    Article  CAS  PubMed  Google Scholar 

  85. Schuetz EG, Wrighton SA, Barwick JL, Guzelian PS . Induction of cytochrome P-450 by glucocorticoids in rat liver. I. Evidence that glucocorticoids and pregnenolone 16 alpha-carbonitrile regulate de novo synthesis of a common form of cytochrome P-450 in cultures of adult rat hepatocytes and in the liver in vivo. J Biol Chem 1984; 259: 1999–2006.

    CAS  PubMed  Google Scholar 

  86. Miura M, Satoh S, Kagaya H, Saito M, Inoue T, Tsuchiya N et al. No impact of age on dose-adjusted pharmacokinetics of tacrolimus, mycophenolic acid and prednisolone 1 month after renal transplantation. Eur J Clin Pharmacol 2009; 65: 1047–1053.

    Article  CAS  PubMed  Google Scholar 

  87. Staatz CE, Tett SE . Pharmacokinetic considerations relating to tacrolimus dosing in the elderly. Drugs Aging 2005; 22: 541–557.

    Article  CAS  PubMed  Google Scholar 

  88. Stratta P, Quaglia M, Cena T, Antoniotti R, Fenoglio R, Menegotto A et al. The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. Eur J Clin Pharmacol 2012; 68: 671–680.

    Article  CAS  PubMed  Google Scholar 

  89. Bhatnagar V, Garcia EP, O'Connor DT, Brophy VH, Alcaraz J, Richard E et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol 2010; 31: 95–103.

    Article  CAS  PubMed  Google Scholar 

  90. Zhu Y, Wang F, Li Q, Zhu M, Du A, Tang W et al. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab Dispos 2014; 42: 245–249.

    Article  CAS  PubMed  Google Scholar 

  91. Zuo XC, Ng CM, Barrett JS, Luo AJ, Zhang BK, Deng CH et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics 2013; 23: 251–261.

    Article  CAS  PubMed  Google Scholar 

  92. Passey C, Birnbaum AK, Brundage RC, Schladt DP, Oetting WS, Leduc RE et al. Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics 2012; 13: 1141–1147.

    Article  CAS  PubMed  Google Scholar 

  93. Press RR, Ploeger BA, den Hartigh J, van der Straaten T, van Pelt J, Danhof M et al. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Ther Drug Monit 2009; 31: 187–197.

    Article  CAS  PubMed  Google Scholar 

  94. de Jonge H, Elens L, de Loor H, van Schaik RH, Kuypers DR . The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics J 2015; 15: 144–152.

    Article  CAS  PubMed  Google Scholar 

  95. Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther 2010; 87: 721–726.

    CAS  PubMed  Google Scholar 

  96. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 2015; 98: 19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by Grants (U19-AI070119 and U01-AI058013) from the National Institute of Allergy and Infectious Disease. We acknowledge the dedication of our coordinators and generous patients.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P A Jacobson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

DeKAF Genomics Investigators

J Michael Cecka, UCLA Immunogenetics Center, Los Angeles, CA, USA. E-mail: mcecka@ucla.edu

Fernando G Cosio, Division of Nephrology, Mayo Clinic, Rochester, MN, USA. E-mail: Cosio.Fernando@mayo.edu

Robert Gaston, University of Alabama, Division of Nephrology, Birmingham, AL, USA. E-mail: rgaston@uab.edu

Sita Gourishankar, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada. E-mail: sitag@ualberta.ca

Lawrence Hunsicker, Nephrology Division, Iowa City, IA, USA. E-mail: lawrence-hunsicker@uiowa.edu

Bertram Kasiske, Department of Medicine, Hennepin County Medical Center and the University of Minnesota, Minneapolis, MN, USA. E-mail: kasis001@umn.edu

David Rush, Health Sciences Center, Winnipeg, MB, Canada. E-mail: drush@exchange.hsc.mb.ca

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanghavi, K., Brundage, R., Miller, M. et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J 17, 61–68 (2017). https://doi.org/10.1038/tpj.2015.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.87

This article is cited by

Search

Quick links