Skip to main content

Advertisement

Log in

Hypericin-mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a therapeutic modality in which a photosensitizer is locally or systemically administered followed by light irradiation of suitable wavelength to achieve selective tissue damage. In addition, PDT is an oxygen-consuming reaction, that causes hypoxia mediated destruction of tumor vasculature that results in effective treatment. However, the hypoxic condition within tumors can cause stress-related release of angiogenic growth factors and cytokines and this inflammatory response could possibly diminish the efficacy of PDT by promoting tumor regrowth. In such circumstances, PDT effectiveness can be enhanced by combining angiogenesis inhibitors into the treatment regimen. Avastin (bevacizumab), a vascular endothelial growth factor (VEGF) specific monoclonal antibody in combination with chemotherapy is offering hope to patients with metastatic colorectal cancer. In this study we evaluated the combination of hypericin-mediated PDT and Avastin on VEGF levels as well as its effect on overall tumor response. Experiments were conducted on bladder carcinoma xenografts established subcutaneously in Balb/c nude mice. Antibody array, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) were performed to assess VEGF concentrations in the various treatment groups. Our results demonstrated that the targeted therapy by Avastin along with PDT can improve tumor responsiveness in bladder tumor xenografts. Immunostaining showed minimal expression of VEGF in tumors treated with combination therapy of PDT and Avastin. Angiogenic proteins e.g., angiogenin, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and interleukins (IL-6 and IL-8) were also found to be downregulated in groups treated with combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic Therapy, Review, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  2. A. R. Kamuhabwa, P. Agostinis, B. Ahmed, W. Landuyt, B. V. Cleynenbreugel, H. V. Poppel, P. A. de Witte, Hypericin as a potential phototherapeutic agent in superficial transitional cell carcinoma of the bladder, Photochem. Photobiol. Sci., 2004, 3, 772–780.

    Article  CAS  PubMed  Google Scholar 

  3. M. A. D’Hallewin, A. R. Kamuhabwa, T. Roskams, P. A. De Witte, L. Baert, Hypericin-based fluorescence diagnosis of bladder carcinoma, BJU Int., 2002, 89, 760–763.

    Article  PubMed  Google Scholar 

  4. M. Olivo, W. Lau, V. Manivasager, P. H. Tan, K. C. Soo, C. Cheng, Macro-microscopic fluorescence of human bladder cancer using hypericin fluorescence cystoscopy and laser confocal microscopy, Int. J. Oncol., 2003, 23, 983–990.

    PubMed  Google Scholar 

  5. T. M. Busch, Local physiological changes during photodynamic therapy, Lasers Surg. Med., 2006, 38, 494–499.

    Article  PubMed  Google Scholar 

  6. C. J. Gomer, A. Ferrario, M. Luna, N. Rucker, S. Wong, Photodynamic therapy: combined modality approaches targeting the tumor microenvironment, Lasers Surg. Med., 2006, 38, 516–521.

    Article  PubMed  Google Scholar 

  7. J. Folkman, The role of angiogenesis in tumor growth, Cancer Biol., 1992, 3, 65–71.

    CAS  Google Scholar 

  8. N. Ferrara, Vascular endothelial growth factor as a target for anticancer therapy, The Oncology, 2004, 9, 2–10.

    CAS  Google Scholar 

  9. C. C. Yang, K. C. Chu, W. M. Yeh, The expression of vascular endothelial growth factor in transitional cell carcinoma of urinary bladder is correlated with cancer progression, Urol. Oncol., 2004, 22, 1–6.

    Article  PubMed  CAS  Google Scholar 

  10. Z. M. Shao, M. Nguyen, Angiogenic factors and bladder cancer, Front. Biosci., 2002, 7, 33–35.

    Article  Google Scholar 

  11. J. P. Crew, T. O’Brien, M. Bradburn, S. Fuggle, R. Bicknell, D. Cranston, A. L. Harris, Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder, Cancer Res., 1997, 57, 5281–5285.

    CAS  PubMed  Google Scholar 

  12. A. Jones, J. Crew, Vascular endothelial growth factor and its correlation with superficial bladder cancer recurrence rates and stage progression, Urol. Clin. North Am., 2000, 27, 191–197.

    Article  CAS  PubMed  Google Scholar 

  13. T. O’Brien, D. Cranston, S. Fuggle, R. Bicknell, A. L. Harris, Different angiogenic pathways characterize superficial and invasive bladder cancer, Cancer Res., 1995, 55, 510–513.

    PubMed  Google Scholar 

  14. T. Shih, C. Lindley, Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies, Clin. Ther., 2006, 28, 1779–1802.

    Article  CAS  PubMed  Google Scholar 

  15. A. Ferrario, C. J. Gomer, Avastin enhances photodynamic therapy treatment of Kaposi’s sarcoma in a mouse tumor model, J. Environ. Path. Toxicol. Oncol., 2006, 25, 251–259.

    Article  CAS  Google Scholar 

  16. B. W. Henderson, S. O. Gollnick, J. W. Snyder, T. M. Busch, P. C. Kousis, R. T. Cheney, J. Morgan, Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors, Cancer Res., 2004, 64, 2120–2126.

    Article  CAS  PubMed  Google Scholar 

  17. G. Powis, L. Kirkpatrick, Hypoxia inducible factor-1alpha as a cancer drug target, Mol. Cancer Ther., 2004, 3, 647–654.

    CAS  PubMed  Google Scholar 

  18. A. Ferrario, K. F. von Tiehl, N. Rucker, M. A. Schwarz, P. S. Gill, C. J. Gomer, Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma, Cancer Res., 2000, 60, 4066–4069.

    CAS  PubMed  Google Scholar 

  19. P. M. Gullino, Considerations on the mechanism of the angiogenic response, Anticancer Res., 1986, 6, 153–158.

    CAS  PubMed  Google Scholar 

  20. N. Solban, P. K. Selbo, A. K. Sinha, S. K. Chang, T. Hasan, Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer, Cancer Res., 2006, 66, 5633–5640.

    Article  CAS  PubMed  Google Scholar 

  21. R. Bhuvaneswari, Y. Y. Gan, K. K. Yee, K. C. Soo, M. Olivo, Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma, Int. J. Mol. Med., 2007, 20, 421–428.

    CAS  PubMed  Google Scholar 

  22. Q. Chen, Z. Huang, H. Chen, H. Shapiro, J. Beckers, F. W. Hetzel, Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy, Photochem. Photobiol., 2002, 76, 197–203.

    Article  CAS  PubMed  Google Scholar 

  23. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiant. Res., 1991, 126, 296–303.

    Article  CAS  Google Scholar 

  24. T. M. Sitnik, J. A. Hampton, B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer, 1998, 77, 1386–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. B. J. Tromberg, A. Orenstein, S. Kimel, S. J. Barker, J. Hyatt, J. S. Nelson, M. W. Berns, In vivo tumour oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy, Photochem. Photobiol., 1990, 52, 375–385.

    Article  CAS  PubMed  Google Scholar 

  26. B. W. Henderson, T. M. Busch, J. W. Snyder, Fluence rate as a modulator of PDT mechanisms, Lasers Surg. Med., 2006, 38, 489–493.

    Article  PubMed  Google Scholar 

  27. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, T. M. Busch, Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome, Cancer Res., 2004, 64, 7553–7561.

    Article  CAS  PubMed  Google Scholar 

  28. W. C. Liang, X. Wu, F. V. Peale, C. V. Lee, G. Meng, J. Gutierrez, L. Fu, A. K. Malik, H. P. Gerber, N. Ferrara, G. Fuh, Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF, J. Biol. Chem., 2006, 281, 951–961.

    Article  CAS  PubMed  Google Scholar 

  29. E. Barbera-Guillem, J. K. Nyhus, C. C. Wolford, C. R. Friece, J. W. Sampsel, Vascular endothelial growth factor secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune complexes potentiate the process, Cancer Res., 2002, 62, 7042–7049.

    CAS  PubMed  Google Scholar 

  30. S. A. Borg, K. E. Kerry, J. A. Royds, R. D. Battersby, T. H. Jones, Correlation of VEGF production with IL-1a and IL-6 secretion by human pituitary adenoma cells, Eur. J. Endocrinol., 2005, 152, 293–300.

    Article  CAS  PubMed  Google Scholar 

  31. H. Saito, S. Tsujitani, A. Kondo, M. Ikeguchi, M. Maeta, N. Kaibar, Expression of vascular endothelial growth factor correlates with hematogenous recurrence in gastric carcinoma, Surgery, 1999, 125, 195–201.

    Article  CAS  PubMed  Google Scholar 

  32. M. E. Harper, E. Glynne-Jones, L. Goddard, V. J. Thurston, K. Griffths, Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells, Br. J. Cancer, 1996, 74, 910–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K. L. Talks, H. Turley, K. C. Gatter, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe, A. L. Harris, The expression and distribution of the hypoxia-inducible factors HIF-1 and HIF-2 in normal human tissues, cancers, and tumor-associated macrophages, Am. J. Pathol., 2000, 157, 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. A. Hartmann, M. Kunz, S. Köstlin, R. Gillitzer, A. Toksoy, E.-B. Bröcker, C. E. Klein, Hypoxia-induced up-regulation of angiogenin in human malignant melanoma, Cancer Res., 1999, 59, 1578–1583.

    CAS  PubMed  Google Scholar 

  35. L. Campo, H. Turley, C. Han, F. Pezzella, K. C. Gatter, A. L. Harris, S. B. Fox, Angiogenin is up-regulated in the nucleus and cytoplasm in human primary breast carcinoma and is associated with markers of hypoxia but not survival, J. Pathol., 2005, 205, 585–91.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Chen, S. Zhang, Y. P. Chen, J. Y. Lin, Increased expression of angiogenin in gastric carcinoma in correlation with tumor angiogenesis and proliferation, World J. Gastroenterol., 2006, 12, 5135–5139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Alavi, J. D. Hood, R. Frausto, D. G. Stupack, D. A. Cheresh, Role of Raf in vascular protection from distinct apoptotic stimuli, Science, 2003, 301, 94–96.

    Article  CAS  PubMed  Google Scholar 

  38. M. S. Pepper, N. Ferrara, L. Orci, R. Montesano, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem. Biophys. Res. Commun., 1992, 189, 824–831.

    Article  CAS  PubMed  Google Scholar 

  39. M. Calvani, A. Rapisarda, B. Uranchimeg, R. H. Shoemaker, G. Melillo, Hypoxic induction of an HIF-1-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells, Blood, 2006, 107, 2705–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. F. Ciardiello, Epidermal growth factor receptor inhibitors in cancer treatment, Future Oncol., 2005, 1, 221–234.

    Article  CAS  PubMed  Google Scholar 

  41. P. Vaupel, The role of hypoxia-induced factors in tumor progression, Oncologist, 2004, 9, 10–17.

    Article  CAS  PubMed  Google Scholar 

  42. J. Tabernero, The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents, Mol. Cancer Res., 2007, 5, 203–220.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Cao, P. Linden, D. Shima, F. Browne, J. Folkman, In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor, J. Clin. Invest., 1996, 98, 2507–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A. Ahmed, C. Dunk, S. Ahmad, A. Khaliq, Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen-a review, Placenta, 2000, 21, 16–24.

    Article  Google Scholar 

  45. T. Cohen, D. Nahari, L. W. Cerem, G. Neufeld, B. Z. Levi, Interleukin 6 induces the expression of vascular endothelial growth factor, J. Biol. Chem., 1996, 271, 736–741.

    Article  CAS  PubMed  Google Scholar 

  46. O. Würtz, A. S. Schrohl, N. M. Sørensen, U. Lademann, I. J. Christensen, H. Mouridsen, N. Brünner, Tissue inhibitor of metalloproteinases-1 in breast cancer, Endocr. Relat. Cancer, 2005, 12, 215–227.

    Article  PubMed  CAS  Google Scholar 

  47. A. Ferrario, C. F. Chantrain, K. von Tiehl, S. Buckley, N. Rucker, D. R. Shalinsky, H. Shimada, Y. A. DeClerck, C. J. Gomer, The matrix metalloproteinase inhibitor prinomastat enhances photodynamic therapy responsiveness in a mouse tumor model, Cancer Res., 2004, 64, 2328–2332.

    Article  CAS  PubMed  Google Scholar 

  48. J. A. Nagy, E. Vasile, D. Feng, C. Sundberg, L. F. Brown, M. J. Detmar, J. A. Lawitts, L. Benjamin, X. Tan, E. J. Manseau, A. M. Dvorak, H. F. Dvorak, Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis, J. Exp. Med., 2002, 196, 1497–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Hoeben, B. Landuyt, M. S. Highley, H. Wildiers Van Oosterom, E. A. De Bruijn, Vascular endothelial growth factor and angiogenesis, Pharmacol. Rev., 2004, 56, 549–580.

    Article  CAS  PubMed  Google Scholar 

  50. B. Kosharskyy, N. Solban, S. K. Chang, I. Rizvi, Y. Chang, T. Hasan, A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer, Cancer Res., 2006, 66, 10953–10958.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malini Olivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhuvaneswari, R., Yuen, G.Y., Chee, S.K. et al. Hypericin-mediated photodynamic therapy in combination with Avastin (bevacizumab) improves tumor response by downregulating angiogenic proteins. Photochem Photobiol Sci 6, 1275–1283 (2007). https://doi.org/10.1039/b705763f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b705763f

Navigation