Skip to main content
Log in

Photophysical behaviour and photodynamic activity of zinc phthalocyanines associated to liposomes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Phthalocyanines are macrocyclic compounds that can be employed as photosensitizers in the treatment of various infections and diseases, as well as in photodynamic therapy. Nevertheless, a disadvantage for the clinical application of these compounds is their strong tendency to form oligomers (especially dimers), a phenomenon that reduces their efficiency as photosensitizers. In the present contribution, we have studied the photophysical and photochemical properties of ZnPc and ZnF16Pc in an organic solvent (THF) and liposomal formulations (DMPC, DPPC and DSPC). Our results show that dye incorporation into liposomes decreases its aggregation degree, as revealed by absorption spectra, triplet quantum yield, and singlet oxygen quantum yield measurements. Additionally, we studied the photodynamic activity of both phthalocyanines in liposomal formulation on human cervical carcinoma (HeLa) cells. For ZnF16Pc the photophysical behavior and phototoxicity in vitro correlate with the aggregation degree. The dimers are not photoactive and the photochemistry of ZnF16Pc depends of the fraction present as monomer. On the other hand, ZnPc aggregation is minimal and its photophysical and photochemical properties are similar in the three liposomes studied. Nevertheless, its phototoxicity in vitro is liposome dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Yslas, V. Rivarola and E. N. Durantini, Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media, Bioorg. Med. Chem., 2005, 13(1), 39–46.

    Article  CAS  PubMed  Google Scholar 

  2. G. Jori, Tumour Photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy, J. Photochem. Photobiol., B, 1996, 36(2), 87–93.

    Article  CAS  Google Scholar 

  3. T. N. Demidova and M. R. Hamblin, Effect of Cell-Photosensitizer Binding and Cell Density on Microbial Photoinactivation, Antimicrob. Agents Chemother., 2005, 49(6), 2329–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. K. Lang, J. Mosinger and D. M. Wagnerová, Review. Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Coord. Chem. Rev., 2004, 248(3-4), 321–350.

    Article  CAS  Google Scholar 

  5. M. Magaraggia, F. Faccenda, A. Gandol,fi and G. Jori, Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact, J. Environ. Monit., 2006, 8(9), 923–931.

    Article  CAS  PubMed  Google Scholar 

  6. N. Tagmatarchis and H. Shinohara, Fullerenes in Medicinal Chemistry and their Biological Applications, Mini-Rev. Med. Chem., 2001, 1(4), 339–348.

    CAS  PubMed  Google Scholar 

  7. T. Ben Amor and G. Jori, Review. Sunlight-activated insecticides: historical background and mechanisms of phototoxic activity, Insect Biochem. Mol. Biol., 2000, 30(10), 915–925.

    Article  PubMed  Google Scholar 

  8. R. R. Allison, H. C. Mota, V. S. Bagnato and C. H. Sibata, Bionanotechnology and photodynamic therapy. State of the art review, Photodiagn. Photodyn. Ther., 2008, 5(1), 19–28.

    Article  CAS  Google Scholar 

  9. I. J. MacDonald and T. J. Dougherty, Review. Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, 5(2), 105–129.

    Article  CAS  Google Scholar 

  10. A. E. O’Connor, W. M. Gallagher and A. T. Byrne, Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and Clinical Advances in Photodynamic Therapy, Photochem. Photobiol., 2009, 85(5), 1053–1074.

    Article  CAS  PubMed  Google Scholar 

  11. I. Scalise and E. N. Durantini, Photodynamic effect of metallo 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl) porphyrins in biomimetic AOT reverse micelles containing urease, J. Photochem. Photobiol., A, 2004, 162(1), 105–113.

    Article  CAS  Google Scholar 

  12. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54(5), 659.

    Article  CAS  PubMed  Google Scholar 

  13. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of molecular photochemistry, University Science Books, Sausalito, California, 2009.

    Google Scholar 

  14. Y.N. Konan, R. Gurny and E. Allemann, Review. State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, 66(2), 89–106.

    Article  CAS  Google Scholar 

  15. E. Buytaert, M. Dewaele and P. Agostinis, Review Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, 2007, 1776(1), 86–107.

    CAS  PubMed  Google Scholar 

  16. J.W. Snyder, E. Skovsen, J.D. C. Lambert, L. Poulsen and P. R. Ogilby, Optical detection of singlet oxygen from single cells, Phys. Chem. Chem. Phys., 2006, 8(37), 4280–4293.

    Article  CAS  PubMed  Google Scholar 

  17. H. Mojzisova, S. Bonneau and D. Brault, REVIEW. Structural, and physico-chemical determinants of the interactions of macrocyclic photosensitizers with cells, Eur. Biophys. J., 2007, 36(8), 943–953.

    Article  CAS  PubMed  Google Scholar 

  18. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr and T. Kiesslich, Review. Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med. Sci., 2008, 24(2), 259–268.

    Article  PubMed  Google Scholar 

  19. D. Frackowiak, A. Waszkowiak, H. Manikowski, R.-M. Ion, J. Cofta and K. Wiktorowicz, The interactions of phthalocyanines with stimulated and resting human peripheral blood mononuclear cells, Acta Biochim. Pol., 2001, 48(1), 257–269.

    Article  CAS  PubMed  Google Scholar 

  20. K. Oda, S.-I. Ogura and I. Okura, Preparation of a water-soluble fluorinated zinc phthalocyanine and its effect for photodynamic therapy, J. Photochem. Photobiol., B, 2000, 59(1-3), 20–25.

    Article  CAS  Google Scholar 

  21. S. M. T. Nunes, F. S. Sguilla and A. C. Tedesco, Photophysical studies of zinc phthalocyanine and chloroaluminium phthalocyanine incorporated into liposomes in the presence of additives, Braz. J. Med. Biol. Res., 2004, 37(2), 273–284.

    Article  CAS  PubMed  Google Scholar 

  22. W. Liu, T. J. Jensen, F. R. Fronczek, R. P. Hammer, K. M. Smith and M. G. H. Vicente, Synthesis and Cellular Studies of Nonaggregated Water-Soluble Phthalocyanines, J. Med. Chem., 2005, 48(4), 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  23. N. Cauchon, M. Nade, G. Bkaily, J. E. Van Lier and D. Hunting, Photodynamic Activity of Substituted Zinc Trisulfophthalocyanines: Role of Plasma Membrane Damage, Photochem. Photobiol., 2006, 82(6), 1712–1720.

    Article  CAS  PubMed  Google Scholar 

  24. C. Fabris, G. Valduga, G. Miotto, L. Borsetto, G. Jori, S. Garbisa and E. Reddi, Photosensitization with Zinc (II) Phthalocyanine as a Switch in the Decision between Apoptosis and Necrosis, Cancer Res., 2001, 61(20), 7495–7500.

    CAS  PubMed  Google Scholar 

  25. M. Magaraggia, V. Visonà, A. Furlan, A. Pagnan, G. Miotto, G. Tognon and G. Jori, Inactivation of vascular smoothmuscle cells photosensitised by liposome-delivered Zn(II)-phthalocyanine, J. Photochem. Photobiol., B, 2006, 82(1), 53–58.

    Article  CAS  Google Scholar 

  26. M. E. Rodríguez, J. Awruch and L. E. Dicelio, Photophysical properties of Zn(II) phthalocyaninates incorporated into liposomes, J. Porphyrins Phthalocyanines, 2002, 6(2), 122–129.

    Article  Google Scholar 

  27. M. E. Rodriguez, F. Morán, A. Bonansea, M. Monetti, D. A. Fernández, C. A. Strassert, V. Rivarola, J. Awruch and L. E. Dicelio, A comparative study of the photophysical and phototoxic properties of octakis(decyloxy)phthalocyaninato zinc(II), incorporated in a hydrophilic polymer, in liposomes and in non-ionic micelles, Photochem. Photobiol. Sci., 2003, 2(10), 988–994.

    Article  CAS  PubMed  Google Scholar 

  28. E. Ricci-Junior and J. Maldonado, Marchetti, Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use, Int. J. Pharm., 2006, 310(1-2), 187–195.

    Article  CAS  PubMed  Google Scholar 

  29. M. N. Sibata, A. C. Tedesco and J. M. Marchetti, Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for Photodynamic Therapy use, Eur. J. Pharm. Sci., 2004, 23(2), 131–138.

    Article  CAS  PubMed  Google Scholar 

  30. R. W. Boyle, J. Rousseau, S. V. Kudrevich, M. O. K. Obochi and J. E. van Lier, Hexadecafluorinated zinc phthalocyanine: photodynamic properties against the EMT-6 tumour in mice and pharmacokinetics using 65Zn as a radiotracer, Br. J. Cancer, 1996, 73(1), 49–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Allémann, N. Brasseur, S. V. Kudrevich, C. La Madeleina and J. E. Van Lier, Photodynamic Activities and Biodistribution of Fluorinated zinc Phthalocyanine Derivatives in the EMT-6 Tumour Model, Int. J. Cancer, 1997, 72(2), 289–294.

    Article  PubMed  Google Scholar 

  32. E. Allemann, J. Rousseau, N. Brasseur, S. V. Kudrevich, K. Lewis and J. E. van Lier, Photodynamic Therapy of Tumours with Hexadecafluoro poly (lactic acid) Nanoparticles Zinc Phthalocyanine Formulated in peg-Coated, Int. J. Cancer, 1996, 66(6), 821–864.

    Article  CAS  PubMed  Google Scholar 

  33. J. M. H. Kremer, M. W. J. v. d. Esker, C. Pathmamanoharan and P. H. Wiersema, Vesicles of Variable Diameter Prepared by a Modified Injection Method, Biochemistry, 1977, 16(17), 3932–3935.

    Article  CAS  PubMed  Google Scholar 

  34. M. Camerin, S. Rello, A. Villanueva, X. Ping, M. E. Kenney, M. A. J. Rodgers and G. Jori, Photothermal sensitisation as a novel therapeutic approach for tumours: Studies at the cellular and animal level, Eur. J. Cancer, 2005, 41(8), 1203–1213.

    Article  CAS  PubMed  Google Scholar 

  35. S. Mabrey and J. Sturtevant, Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry, Proc. Natl. Acad. Sci. U. S. A., 1976, 73(11), 3862–3866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Ono, K. Takeuchi, A. Sukenari, T. Suzuki, I. Adachi and M. Ueno, Reconsideration of Drug Release from Temperature-Sensitive Liposomes, Biol. Pharm. Bull., 2002, 25(1), 97–101.

    Article  CAS  PubMed  Google Scholar 

  37. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65(1-2), 55–63.

    Article  CAS  PubMed  Google Scholar 

  38. E. Alarcón, A. M. Edwards, A. M. Garcia, M. Muñoz, A. Aspée, B. C. D. and E. A. Lissi, Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts, Photochem. Photobiol. Sci., 2009, 8(2), 255–263.

    Article  PubMed  CAS  Google Scholar 

  39. A. Wolnicka-Glubisz, M. Lukasik, A. Pawlak, A. Wielgus, M. Niziolek- Kierecka and T. Sarna, Peroxidation of lipids in liposomal membranes of different composition photosensitized by chlorpromazine, Photochem. Photobiol. Sci., 2009, 8(2), 241–247.

    Article  CAS  PubMed  Google Scholar 

  40. A. S. L. Derycke and A. M. de Witte, Liposomes for photodynamic therapy, Adv. Drug Delivery Rev., 2004, 56(1), 17–30.

    Article  CAS  Google Scholar 

  41. L. Bourré, S. Thibaut, M. Fimiani, Y. Ferrand, G. Simonneaux and T. Patrice, In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: interest of a DMPC liposome formulation, Pharmacol. Res., 2003, 47(3), 253–261.

    Article  PubMed  Google Scholar 

  42. F. Ishii and T. Nii, Properties of various phospholipid mixtures as emulsifiers or dispersing agents in nanoparticle drug carrier preparations, Colloids Surf., B, 2005, 41(4), 257–262.

    Article  CAS  Google Scholar 

  43. S. Dadashzadeh, A. M. Vali and M. Rezaie, The effect of PEG coating on in vitro cytotoxicity and in vivo disposition of topotecan loaded liposomes in rats, Int. J. Pharm., 2008, 353(1-2), 251–259.

    Article  CAS  PubMed  Google Scholar 

  44. Y.-F. Ho, M.-H. Wu, B.-H. Cheng, Y.-W. Chen and M.-C. Shih, Lipidmediated preferential localization of hypericin in lipid membranes, Biochim. Biophys. Acta, Biomembr., 2009, 1788(6), 1287–1295.

    Article  CAS  Google Scholar 

  45. O. Ishida, K. Maruyama, H. Tanahashi, M. Iwatsuru, K. Sasaki, M. Eriguchi and H. Yanagie, Liposomes Bearing Polyethyleneglycol- Coupled Transferrin with Intracellular Targeting Property to the Solid Tumors In Vivo, Pharmacol. Res., 2001, 18(7), 1042–1048.

    Article  CAS  Google Scholar 

  46. A. Molinari, M. Colone, A. Calcabrini, A. Stringaro, L. Toccacieli, G. Arancia, S. Mannino, A. Mangiola, G. Maira, C. Bombelli and G. Mancini, Cationic liposomes, loaded with m-THPC, in photodynamic therapy for malignant glioma, Toxicol. in Vitro, 2007, 21(2), 230–234.

    Article  CAS  PubMed  Google Scholar 

  47. R. A. Videira, M. Antunes-Madeira and V. M. C. Madeira, Interaction of ethylazinphos with the physical organization of model and native membranes, Biochim. Biophys. Acta, Biomembr., 1996, 1281(1), 65–72.

    Article  Google Scholar 

  48. E. A. Lissi, E. Abuin and M. Saez, Anomalous Dependence of Pyrene Spectra and Lifetimes with Temperature in Large Unilamellar Vesicles from Dioctadecyldimethylammonium Chloride and Dipalmitoylphosphatidylcholine, Langmuir, 1992, 8(2), 348–350.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Lissi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, A.M., Alarcon, E., Muñoz, M. et al. Photophysical behaviour and photodynamic activity of zinc phthalocyanines associated to liposomes. Photochem Photobiol Sci 10, 507–514 (2011). https://doi.org/10.1039/c0pp00289e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00289e

Navigation