Skip to main content
Log in

Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I–II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Diffey, What is light?, Photodermatol., Photoimmunol. Photomed., 2002, 18(2), 68–74.

    Article  Google Scholar 

  2. H. Honigsmann, Erythema and pigmentation, Photodermatol., Photoimmunol. Photomed., 2002, 18(2), 75–81.

    Article  Google Scholar 

  3. K. S. Suh, et al., A long-term evaluation of erythema and pigmentation induced by ultraviolet radiations of different wavelengths, Skin Res. Technol., 2007, 13(4), 360–368.

    Article  Google Scholar 

  4. F. Casetti, et al., Double trouble from sunburn: UVB-induced erythema is associated with a transient decrease in skin pigmentation, Skin Pharmacol. Physiol., 2011, 24(3), 160–165.

    Article  CAS  Google Scholar 

  5. A. W. Schmalwieser, S. Wallisch, and B. Diffey, A library of action spectra for erythema and pigmentation, Photochem. Photobiol. Sci., 2012, 11(2), 251–268.

    Article  CAS  Google Scholar 

  6. Y. Matsumura, and H. N. Ananthaswamy, Short-term and long-term cellular and molecular events following UV irradiation of skin: implications for molecular medicine, Expert Rev. Mol. Med., 2002, 4(26), 1–22.

    Article  Google Scholar 

  7. N. Agar, and A. R. Young, Melanogenesis: a photoprotective response to DNA damage?, Mutat. Res., 2005, 571 1–2, 121–132.

    Article  CAS  Google Scholar 

  8. M. H. Ravnbak, et al., Skin pigmentation kinetics after exposure to ultraviolet A, Acta Derm.-Venereol., 2009, 89(4), 357–363.

    Article  Google Scholar 

  9. R. Wolber, et al., Pigmentation effects of solar-simulated radiation as compared with UVA and UVB radiation, Pigm. Cell Melanoma Res., 2008, 21(4), 487–491.

    Article  Google Scholar 

  10. N. Maddodi, A. Jayanthy, and V. Setaluri, Shining Light on Skin Pigmentation: The Darker and the Brighter Side of Effects of UV Radiation, Photochem. Photobiol., 2012, 88(5), 1075–1082.

    Article  CAS  Google Scholar 

  11. B. Diffey, Climate change, ozone depletion and the impact on ultraviolet exposure of human skin, Phys. Med. Biol., 2004, 49(1), R1–11.

    Article  Google Scholar 

  12. Sunlight, ultraviolet radiation, and the skin excerpts: NIH consensus statement, Md. Med. J., 1990, 39(9), 851–852.

  13. C. A. Cole, P. D. Forbes, and R. E. Davies, An action spectrum for UV photocarcinogenesis, Photochem. Photobiol., 1986, 43(3), 275–284.

    Article  CAS  Google Scholar 

  14. J. H. Epstein, Photocarcinogenesis: a review, Natl. Cancer Inst. Monogr., 1978, 50, 13–25.

    Google Scholar 

  15. H. M. Gloster, Jr., and K. Neal, Skin cancer in skin of color, J. Am. Acad. Dermatol., 2006, 55(5), 741–760.; quiz pp. 761–4.

    Article  Google Scholar 

  16. F. P. Noonan, et al., Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment, Nat. Commun., 2012, 3, 884.

    Article  Google Scholar 

  17. H. M. Gloster, Jr., and D. G. Brodland, The epidemiology of skin cancer, Dermatol. Surg., 1996, 22(3), 217–226.

    Article  Google Scholar 

  18. S. S. Strom, and Y. Yamamura, Epidemiology of nonmelanoma skin cancer, Clin. Plast. Surg., 1997, 24(4), 627–636.

    Article  CAS  Google Scholar 

  19. J. Moan, et al., UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden, Photochem. Photobiol. Sci., 2012, 11(1), 191–198.

    Article  CAS  Google Scholar 

  20. M. Boniol, et al., Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis, BMJ, 2012, 345, e4757.

    Article  Google Scholar 

  21. E. O. Hoxtell, et al., Incidence of skin carcinoma after renal transplantation, Arch. Dermatol., 1977, 113(4), 436–438.

    Article  CAS  Google Scholar 

  22. B. H. Hill, Immunosuppressive drug therapy as a potentiator of skin tumours in five patients with lymphoma, Australas. J. Dermatol., 1976, 17(2), 46–48.

    Article  CAS  Google Scholar 

  23. W. L. Morison, J. A. Parrish, and K. J. Bloch, The in vivo effect of UVB radiation on lymphocyte function [proceedings], Br. J. Dermatol., 1978, 99 Suppl. 16, 21.

    Article  CAS  Google Scholar 

  24. C. Nishigori, et al., The immune system in ultraviolet carcinogenesis, J. Invest. Dermatol. Symp. Proc., 1996, 1(2), 143–146.

    CAS  Google Scholar 

  25. C. Routaboul, A. Denis, and A. Vinche, Immediate pigment darkening: description, kinetic and biological function, Eur. J. Dermatol., 1999, 9(2), 95–99.

    CAS  Google Scholar 

  26. K. H. Kaidbey, and A. M. Kligman, Sunburn protection by longwave ultraviolet radiation-induced pigmentation, Arch. Dermatol., 1978, 114(1), 46–48.

    Article  CAS  Google Scholar 

  27. N. Kollias, et al., Photoprotection by melanin, J. Photochem. Photobiol., B, 1991, 9(2), 135–160.

    Article  CAS  Google Scholar 

  28. R. M. Sayre, et al., Skin type, minimal erythema dose (MED), and sunlight acclimatization, J. Am. Acad. Dermatol., 1981, 5(4), 439–443.

    Article  CAS  Google Scholar 

  29. A. Svobodova, and J. Vostalova, Solar radiation induced skin damage: review of protective and preventive options, Int. J. Radiat. Biol., 2010, 86(12), 999–1030.

    Article  CAS  Google Scholar 

  30. A. D. Pearse, S. A. Gaskell, and R. Marks, Epidermal changes in human skin following irradiation with either UVB or UVA, J. Invest. Dermatol., 1987, 88(1), 83–87.

    Article  CAS  Google Scholar 

  31. M. Gniadecka, et al., Photoprotection in vitiligo and normal skin. A quantitative assessment of the role of stratum corneum, viable epidermis and pigmentation, Acta Derm. Venereol., 1996, 76(6), 429–432.

    CAS  Google Scholar 

  32. J. M. Sheehan, C. S. Potten, and A. R. Young, Tanning in human skin types II and III offers modest photoprotection against erythema, Photochem. Photobiol., 1998, 68(4), 588–592.

    Article  CAS  Google Scholar 

  33. J. A. Parrish, K. F. Jaenicke, and R. R. Anderson, Erythema and melanogenesis action spectra of normal human skin, Photochem. Photobiol., 1982, 36(2), 187–191.

    Article  CAS  Google Scholar 

  34. T. B. Fitzpatrick, The validity and practicality of sun-reactive skin types I through VI, Arch. Dermatol., 1988, 124(6), 869–871.

    Article  CAS  Google Scholar 

  35. J. M. Sheehan, et al., Repeated ultraviolet exposure affords the same protection against DNA photodamage and erythema in human skin types II and IV but is associated with faster DNA repair in skin type IV, J. Invest. Dermatol., 2002, 118(5), 825–829.

    Article  CAS  Google Scholar 

  36. N. A. Soter, Acute effects of ultraviolet radiation on the skin, Semin. Dermatol., 1990, 9(1), 11–15.

    CAS  Google Scholar 

  37. K. H. Kaidbey, et al., Photoprotection by melanin–a comparison of black and Caucasian skin, J. Am. Acad. Dermatol., 1979, 1(3), 249–260.

    Article  CAS  Google Scholar 

  38. R. M. Halder, S. Bridgeman-Shah, Skin cancer in African Americans, Cancer, 1995, 75 S2), 667–673.

    Article  CAS  Google Scholar 

  39. K. Waterston, L. Naysmith, and J. L. Rees, Variation in skin thickness may explain some of the within-person variation in ultraviolet radiation-induced erythema at different body sites, J. Invest. Dermatol., 2005, 124(5), 1078.

    Article  CAS  Google Scholar 

  40. N. Kollias, and A. Baqer, An experimental study of the changes in pigmentation in human skin in vivo with visible and near infrared light, Photochem. Photobiol., 1984, 39(5), 651–659.

    Article  CAS  Google Scholar 

  41. W. M. Broekmans, et al., Determinants of skin sensitivity to solar irradiation, Eur. J. Clin. Nutr., 2003, 57(10), 1222–1229.

    Article  CAS  Google Scholar 

  42. M. A. Pathak, and D. L. Fanselow, Photobiology of melanin pigmentation: dose/response of skin to sunlight and its contents, J. Am. Acad. Dermatol., 1983, 9(5), 724–733.

    Article  CAS  Google Scholar 

  43. K. C. Farmer, and M. F. Naylor, Sun exposure, sunscreens, and skin cancer prevention: a year-round concern, Ann. Pharmacother., 1996, 30(6), 662–673.

    Article  CAS  Google Scholar 

  44. M. H. Ravnbak, and H. C. Wulf, Pigmentation after single and multiple UV-exposures depending on UV-spectrum, Arch. Dermatol. Res., 2007, 299(1), 25–32.

    Article  CAS  Google Scholar 

  45. J. A. Parrish, S. Zaynoun, and R. R. Anderson, Cumulative effects of repeated subthreshold doses of ultraviolet radiation, J. Invest. Dermatol., 1981, 76(5), 356–358.

    Article  CAS  Google Scholar 

  46. D. E. Brash, Sunlight and the onset of skin cancer, Trends Genet., 1997, 13(10), 410–414.

    Article  CAS  Google Scholar 

  47. S. H. Ibbotson, and P. M. Farr, The time-course of psoralen ultraviolet A (PUVA) erythema, J. Invest. Dermatol., 1999, 113(3), 346–350.

    Article  CAS  Google Scholar 

  48. M. Henriksen, et al., Minimal erythema dose after multiple UV exposures depends on pre-exposure skin pigmentation, Photodermatol., Photoimmunol. Photomed., 2004, 20(4), 163–169.

    Article  CAS  Google Scholar 

  49. A. Kawada, UVB-induced erythema, delayed tanning, and UVA-induced immediate tanning in Japanese skin, Photodermatology, 1986, 3(6), 327–333.

    CAS  Google Scholar 

  50. N. Kollias, et al., Erythema and melanogenesis action spectra in heavily pigmented individuals as compared to fair-skinned Caucasians, Photodermatol., Photoimmunol. Photomed., 1996, 12(5), 183–188.

    Article  CAS  Google Scholar 

  51. M. H. Ravnbak, et al., Skin pigmentation kinetics after UVB exposure, Acta Derm. Venereol., 2008, 88(3), 223–228.

    Google Scholar 

  52. K. H. Kaidbey, and A. M. Kligman, Cumulative effects from repeated exposures to ultraviolet radiation, J. Invest. Dermatol., 1981, 76(5), 352–355.

    Article  CAS  Google Scholar 

  53. T. A. Phan, et al., Melanin differentially protects from the initiation and progression of threshold UV-induced erythema depending on UV waveband, Photodermatol., Photoimmunol. Photomed., 2006, 22(4), 174–180.

    Article  CAS  Google Scholar 

  54. N. Kollias, A. H. Baqer, H. Ou-Yang, Diurnal and seasonal variations of the UV cut-off wavelength and most erythemally effective wavelength of solar spectra, Photodermatol., Photoimmunol. Photomed., 2003, 19(2), 89–92.

    Article  CAS  Google Scholar 

  55. A. R. Young, et al., The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema, J. Invest. Dermatol., 1998, 111(6), 982–988.

    Article  CAS  Google Scholar 

  56. D. E. Brash, Roles of the transcription factor p53 in keratinocyte carcinomas, Br. J. Dermatol., 2006, 154 Suppl 1, 8–10.

    Article  CAS  Google Scholar 

  57. V. Vanchinathan, and H. W. Lim, A Dermatologist‘s Perspective on Vitamin D, Mayo Clin. Proc., 2012, 87(4), 372–380.

    Article  CAS  Google Scholar 

  58. N. L. Wicks, et al., UVA phototransduction drives early melanin synthesis in human melanocytes, Curr. Biol., 2011, 21(22), 1906–1911.

    Article  CAS  Google Scholar 

  59. B. A. Gilchrest, et al., The pathogenesis of melanoma induced by ultraviolet radiation, N. Engl. J. Med., 1999, 340(17), 1341–1348.

    Article  CAS  Google Scholar 

  60. L. A. Applegate, et al., Erythema induction by ultraviolet radiation points to a possible acquired defense mechanism in chronically sun-exposed human skin, Dermatology, 1997, 194(1), 41–49.

    Article  CAS  Google Scholar 

  61. Council on Scientific Affairs, Harmful effects of ultraviolet radiation, J. Am. Med. Assoc., 1989, 262(3), 380–384.

  62. B. L. Diffey, P. M. Farr, and A. M. Oakley, Quantitative studies on UVA-induced erythema in human skin, Br. J. Dermatol., 1987, 117(1), 57–66.

    Article  CAS  Google Scholar 

  63. K. H. Kaidbey, and A. M. Kligman, The acute effects of long-wave ultraviolet radiation on human skin, J. Invest. Dermatol., 1979, 72(5), 253–256.

    Article  CAS  Google Scholar 

  64. J. A. Parrish, et al., Cutaneous effects of pulsed nitrogen gas laser irradiation, J. Invest. Dermatol., 1976, 67(5), 603–608.

    Article  CAS  Google Scholar 

  65. L. A. Applegate, and E. Frenk, Oxidative defense in cultured human skin fibroblasts and keratinocytes from sun-exposed and non-exposed skin, Photodermatol., Photoimmunol. Photomed., 1995, 11(3), 95–101.

    Article  CAS  Google Scholar 

  66. C. F. Rosen, et al., Immediate pigment darkening: visual and reflectance spectrophotometric analysis of action spectrum, Photochem. Photobiol., 1990, 51(5), 583–588.

    Article  CAS  Google Scholar 

  67. B. H. Mahmoud, et al., Impact of long-wavelength UVA and visible light on melanocompetent skin, J. Invest. Dermatol., 2010, 130(8), 2092–2097.

    Article  CAS  Google Scholar 

  68. Y. Miyamura, et al., Regulation of human skin pigmentation and responses to ultraviolet radiation, Pigm. Cell Res., 2007, 20(1), 2–13.

    Article  CAS  Google Scholar 

  69. R. Ramasubramaniam, et al., Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation?, Photochem. Photobiol. Sci., 2011, 10(12), 1887–1893.

    Article  CAS  Google Scholar 

  70. R. W. Gange, et al., Comparative protection efficiency of UVA- and UVB-induced tans against erythema and formation of endonuclease-sensitive sites in DNA by UVB in human skin, J. Invest. Dermatol., 1985, 85(4), 362–364.

    Article  CAS  Google Scholar 

  71. G. Black, E. Matzinger, and R. W. Gange, Lack of photoprotection against UVB-induced erythema by immediate pigmentation induced by 382 nm radiation, J. Invest. Dermatol., 1985, 85(5), 448–449.

    Article  CAS  Google Scholar 

  72. Y. Miyamura, et al., The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin, Pigm. Cell Melanoma Res., 2011, 24(1), 136–147.

    Article  Google Scholar 

  73. Y. Xiang, et al., UVA-induced protection of skin through the induction of heme oxygenase-1, BioSci. Trends, 2011, 5(6), 239–244.

    Article  CAS  Google Scholar 

  74. N. Bech-Thomsen, and H. C. Wulf, Photoprotection due to pigmentation and epidermal thickness after repeated exposure to ultraviolet light and psoralen plus ultraviolet A therapy, Photodermatol., Photoimmunol. Photomed., 1996, 11 5–6, 213–218.

    Google Scholar 

  75. E. Kvam, and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18(12), 2379–2384.

    Article  CAS  Google Scholar 

  76. T. Douki, et al., Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42(30), 9221–9226.

    Article  CAS  Google Scholar 

  77. T. M. Runger, et al., Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: a less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones, Photochem. Photobiol. Sci., 2012, 11(1), 207–215.

    Article  Google Scholar 

  78. A. N. Paunel, et al., Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms, Free Radical Biol. Med., 2005, 38(5), 606–615.

    Article  CAS  Google Scholar 

  79. C. Oplander, et al., Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracutaneous photolabile nitric oxide derivates, Circ. Res., 2009, 105(10), 1031–1040.

    Article  Google Scholar 

  80. C. V. Suschek, C. Oplander, E. E. van Faassen, Non-enzymatic NO production in human skin: effect of UVA on cutaneous NO stores, Nitric Oxide, 2010, 22(2), 120–135.

    Article  CAS  Google Scholar 

  81. M. Feelisch, et al., Is sunlight good for our heart?, Eur. Heart J., 2010, 31(9), 1041–1045.

    Article  Google Scholar 

  82. S. G. Coelho, and V. J. Hearing, UVA tanning is involved in the increased incidence of skin cancers in fair-skinned young women, Pigm. Cell Melanoma Res., 2010, 23(1), 57–63.

    Article  Google Scholar 

  83. D. Lazovich, et al., Indoor tanning and risk of melanoma: a case-control study in a highly exposed population, Cancer Epidemiol., Biomarkers Prev., 2010, 19(6), 1557–1568.

    Article  Google Scholar 

  84. M. B. Veierod, et al., Sun and solarium exposure and melanoma risk: effects of age, pigmentary characteristics, and nevi, Cancer Epidemiol., Biomarkers Prev., 2010, 19(1), 111–120.

    Article  Google Scholar 

  85. A. E. Cust, et al., Sunbed use during adolescence and early adulthood is associated with increased risk of early-onset melanoma, Int. J. Cancer, 2011, 128(10), 2425–2435.

    Article  CAS  Google Scholar 

  86. S. B. Porges, K. H. Kaidbey, and G. L. Grove, Quantification of visible light-induced melanogenesis in human skin, Photodermatology, 1988, 5(5), 197–200.

    CAS  Google Scholar 

  87. R. F. Pathak MA, and T. B. Fitzpatrick, Melanogenesis in human skin following exposure to long-wave ultraviolet and visible light, J. Invest. Dermatol., 1962, 39, 435–443.

    Article  Google Scholar 

  88. V. M. Verallo-Rowell, J. M. Pua, and D. Bautista, Visible light photopatch testing of common photocontactants in female filipino adults with and without melasma: a cross-sectional study, J. Drugs Dermatol., 2008, 7(2), 149–156.

    Google Scholar 

  89. S. M. Schieke, P. Schroeder, and J. Krutmann, Cutaneous effects of infrared radiation: from clinical observations to molecular response mechanisms, Photodermatol., Photoimmunol. Photomed., 2003, 19(5), 228–234.

    Article  CAS  Google Scholar 

  90. H. Piazena, and D. K. Kelleher, Effects of infrared-A irradiation on skin: discrepancies in published data highlight the need for an exact consideration of physical and photobiological laws and appropriate experimental settings, Photochem. Photobiol., 2010, 86(3), 687–705.

    Article  CAS  Google Scholar 

  91. J. A. Pujol, and M. Lecha, Photoprotection in the infrared radiation range, Photodermatol., Photoimmunol. Photomed., 1992, 9(6), 275–278.

    Google Scholar 

  92. H. S. Lee, et al., Minimal heating dose: a novel biological unit to measure infrared irradiation, Photodermatol., Photoimmunol. Photomed., 2006, 22(3), 148–152.

    Article  Google Scholar 

  93. L. H. Kligman, Intensification of ultraviolet-induced dermal damage by infrared radiation, Arch. Dermatol. Res., 1982, 272 3–4, 229–238.

    Article  CAS  Google Scholar 

  94. J. Krutmann, A. Morita, and J. H. Chung, Sun exposure: what molecular photodermatology tells us about its good and bad sides, J. Invest. Dermatol., 2012, 132 3 Pt 2, 976–984.

    Article  CAS  Google Scholar 

  95. P. Schroeder, et al., Infrared radiation-induced matrix metalloproteinase in human skin: implications for protection, J. Invest. Dermatol., 2008, 128(10), 2491–2497.

    Article  CAS  Google Scholar 

  96. M. H. Shin, et al., Chronic heat treatment causes skin wrinkle formation and oxidative damage in hairless mice, Mech. Ageing Dev., 2012, 133 2–3, 92–98.

    Article  CAS  Google Scholar 

  97. J. Krutmann, and P. Schroeder, Role of mitochondria in photoaging of human skin: the defective powerhouse model, J. Invest. Dermatol. Symp. Proc., 2009, 14(1), 44–49.

    Article  CAS  Google Scholar 

  98. S. Menezes, et al., Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity, J. Invest. Dermatol., 1998, 111(4), 629–633.

    Article  CAS  Google Scholar 

  99. C. Jantschitsch, et al., Infrared radiation confers resistance to UV-induced apoptosis via reduction of DNA damage and upregulation of antiapoptotic proteins, J. Invest. Dermatol., 2009, 129(5), 1271–1279.

    Article  CAS  Google Scholar 

  100. S. Frank, et al., Infrared radiation induces the p53 signaling pathway: role in infrared prevention of ultraviolet B toxicity, Exp. Dermatol., 2006, 15(2), 130–137.

    Article  CAS  Google Scholar 

  101. L. A. Applegate, et al., Induction of the putative protective protein ferritin by infrared radiation: implications in skin repair, Int. J. Mol. Med., 2000, 5(3), 247–251.

    CAS  Google Scholar 

  102. L. Zastrow, et al., The missing link–light-induced (280–1600 nm) free radical formation in human skin, Skin Pharmacol. Physiol., 2009, 22(1), 31–44.

    Article  CAS  Google Scholar 

  103. M. E. Darvin, et al., Formation of free radicals in human skin during irradiation with infrared light, J. Invest. Dermatol., 2010, 130(2), 629–631.

    Article  CAS  Google Scholar 

  104. T. Jung, et al., Effects of water-filtered infrared A irradiation on human fibroblasts, Free Radical Biol. Med., 2010, 48(1), 153–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iltefat Hamzavi.

Additional information

This article is published as part of a themed issue on current topics in photodermatology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sklar, L.R., Almutawa, F., Lim, H.W. et al. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci 12, 54–64 (2013). https://doi.org/10.1039/c2pp25152c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25152c

Navigation