Skip to main content

Advertisement

Log in

A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Colon cancer is the third most frequent cancer and the fourth most common cause of cancer-related mortality worldwide and the standard therapy is surgical resection plus adjuvant chemotherapy. Photodynamic therapy (PDT) has been proposed as an adjuvant therapy because it can prevent the tumor recurrence after surgical excision in colon cancer patients. Hypoxia is a common feature in solid tumors and leads to chemo/radioresistance. Recently, it has been shown that in response to hypoxia, cells can induce HIF-1α-mediated autophagy to survive in this hostile microenvironment. Moreover, hypoxia and autophagy have been implicated in the resistance to antitumor PDT. However, the molecular signals by which HIF-1α induces autophagy in the PDT context have not been studied yet. Here we evaluate the interplay between HIF-1α and autophagy as well as the underlying mechanism in the PDT resistance of colon cancer cells. Our study demonstrates that HIF-1α stabilization significantly increases VMP1-related autophagy through binding to hypoxia responsive elements in the VMP1 promoter. We show that HIF-1α-induced autophagy increases colon cancer cell survival as well as decreases cell death after PDT. Moreover, here we demonstrate that HIF-1α-induced autophagy is mediated by VMP1 expression, since the downregulation of VMP1 by the RNA interference strategy reduces HIF-1α-induced autophagy and cell survival after PDT. In conclusion, PDT induces autophagy as a survival mechanism and the induction of the novel HIF-1α/VMP1-autophagic pathway may explain, at least in part, the resistance of colon cancer cells to PDT. The knowledge of the molecular mechanisms involved in PDT resistance may lead to more accurate therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Longo, and W. B. Strum, Colorectal Adenomas, N. Engl. J. Med., 2016, 374, 11, 1065–1075.

    Article  CAS  Google Scholar 

  2. K. De Greef, C. Rolfo, and A. Russo, {etet al.}, Multisciplinary management of patients with liver metastasis from colorectal cancer, World J. Gastroenterol., 2016, 22, 32, 7215–7225.

    Article  PubMed  PubMed Central  Google Scholar 

  3. R. M. Heaney, C. Shields, and J. Mulsow, Outcome following incomplete surgical cytoreduction combined with intraperitoneal chemotherapy for colorectal peritoneal metastases, World J. Gastrointest. Oncol., 2015, 7, 12, 445–454.

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. B. Brown, E. A. Brown, and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 8, 497–508.

    Article  CAS  PubMed  Google Scholar 

  5. A. Oniszczuk, K. A. Wojtunik-Kulesza, T. Oniszczuk, and K. Kasprzak, The potential of photodynamic therapy (PDT)—Experimental investigations and clinical use, Biomed. Pharmacother., 2016, 83, 912–929.

    Article  CAS  PubMed  Google Scholar 

  6. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death, Photodiagn. Photodyn. Ther., 2005, 2, 1, 1–23.

    Article  CAS  Google Scholar 

  7. J.-O. Yoo, and K.-S. Ha, New insights into the mechanisms for photodynamic therapy-induced cancer cell death, Int. Rev. Cell Mol. Biol., 2012, 295, 139–174.

    Article  CAS  PubMed  Google Scholar 

  8. N. Shishkova, O. Kuznetsova, and T. Berezov, Photodynamic therapy in gastroenterology, J. Gastrointest. Cancer., 2013, 44, 3, 251–259.

    Article  CAS  PubMed  Google Scholar 

  9. H. Barr, A. J. MacRobert, C. J. Tralau, P. B. Boulos, and S. G. Bown, The significance of the nature of the photosensitizer for photodynamic therapy: quantitative and biological studies in the colon, Br. J. Cancer., 1990, 62, 5, 730–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J.-P. Cosse, and C. Michiels, Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression, Anticancer Agents Med. Chem., 2008, 8, 7, 790–797.

    Article  CAS  PubMed  Google Scholar 

  11. K. Balamurugan, HIF-1 at the crossroads of hypoxia, inflammation, and cancer, Int. J. Cancer., 2016, 138, 5, 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  12. C. Michiels, C. Tellier, and O. Feron, Cycling hypoxia: A key feature of the tumor microenvironment, Biochim. Biophys. Acta, Rev. Cancer., 2016, 1866, 1, 76–86.

    Article  CAS  Google Scholar 

  13. I. Amelio, and G. Melino, The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression, Trends Biochem. Sci., 2015, 40, 8, 425–434.

    Article  CAS  PubMed  Google Scholar 

  14. L. Lin, and E. H. Baehrecke, Autophagy, cell death, and cancer, Mol. Cell. Oncol., 2015, 2, 3, e985913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. L. Harhaji-Trajkovic, U. Vilimanovich, T. Kravic-Stevovic, V. Bumbasirevic, and V. Trajkovic, AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumour cells, J. Cell. Mol. Med., 2009, 13, 9B, 3644–3654.

    Article  CAS  PubMed  Google Scholar 

  16. D. Liu, Y. Yang, Q. Liu, and J. Wang, Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells, Med. Oncol., 2011, 28, 1, 105–111.

    Article  PubMed  CAS  Google Scholar 

  17. B. Del Bello, M. Toscano, D. Moretti, and E. Maellaro, Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells, PLoS One., 2013, 8, 2, e57236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Terman, and U. T. Brunk, Autophagy in cardiac myocyte homeostasis, aging, and pathology, Cardiovasc. Res., 2005, 68, 3, 355–365.

    Article  CAS  PubMed  Google Scholar 

  19. X. Yang, D.-D. Yu, and F. Yan, {etet al.}, The role of autophagy induced by tumor microenvironment in different cells and stages of cancer, Cell Biosci., 2015, 5, 1, 14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. A. François, S. Marchal, F. Guillemin, and L. Bezdetnaya, mTHPC-based photodynamic therapy induction of autophagy and apoptosis in cultured cells in relation to mitochondria and endoplasmic reticulum stress, Int. J. Oncol., 2011, 39, 6, 1537–1543.

    PubMed  Google Scholar 

  21. T. R. O’Donovan, G. C. O’Sullivan, and S. L. McKenna, Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics, Autophagy., 2011, 7, 5, 509–524.

    Article  PubMed  PubMed Central  Google Scholar 

  22. M.-F. Wei, M.-W. Chen, and K.-C. Chen, {etet al.}, Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells, Autophagy, 2014, 10, 7, 1179–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Ropolo, D. Grasso, and R. Pardo, {etet al.}, The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells, J. Biol. Chem., 2007, 282, 51, 37124–37133.

    Article  CAS  PubMed  Google Scholar 

  24. M. I. Vaccaro, A. Ropolo, D. Grasso, and J. L. Iovanna, A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy, Autophagy., 2008, 4, 3, 388–390.

    Article  CAS  PubMed  Google Scholar 

  25. M. I. Molejon, A. Ropolo, and M. I. Vaccaro, VMP1 is a new player in the regulation of the autophagy-specific phosphatidylinositol 3-kinase complex activation, Autophagy., 2013, 9, 6, 933–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. I. Molejon, A. Ropolo, A. Lo Re, V. Boggio, and M. I. Vaccaro, The VMP1-Beclin 1 interaction regulates autophagy induction, Sci. Rep., 2013, 3, 1055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. D. Grasso, A. Ropolo, and A. Lo Ré, {etet al.}, Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death, J. Biol. Chem., 2011, 286, 10, 8308–8324.

    Article  CAS  PubMed  Google Scholar 

  28. A. E. Lo Ré, M. G. Fernández-Barrena, and L. L. Almada, {etet al.}, Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells, J. Biol. Chem., 2012, 287, 30, 25325–25334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. R. Pardo, A. Lo Ré, and C. Archange, {etet al.}, Gemcitabine induces the VMP1-mediated autophagy pathway to promote apoptotic death in human pancreatic cancer cells, Pancreatology, 2010, 10, 1, 19–26.

    Article  CAS  PubMed  Google Scholar 

  30. D. Vordermark, P. Kraft, and A. Katzer, {etet al.}, Glucose requirement for hypoxic accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha), Cancer Lett., 2005, 230, 1, 122–133.

    Article  CAS  PubMed  Google Scholar 

  31. M. J. Curtis, R. A. Bond, and D. Spina, {etet al.}, Experimental design and analysis and their reporting: new guidance for publication in BJP, Br. J. Pharmacol., 2015, 172, 14, 3461–3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. L. M. Lopez-Sánchez, C. Jimenez, and A. Valverde, {etet al.}, CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer, PLoS One, 2014, 9, 6, e99143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. E. L. LaGory, and A. J. Giaccia, The ever-expanding role of HIF in tumour and stromal biology, Nat. Cell Biol., 2016, 18, 4, 356–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Shibata, A. J. Giaccia, and J. M. Brown, Development of a hypoxia-responsive vector for tumor-specific gene therapy, Gene Ther., 2000, 7, 6, 493–498.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Kabeya, N. Mizushima, and T. Ueno, {etet al.}, LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J., 2000, 19, 21, 5720–5728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Wilkinson, J. O’Prey, M. Fricker, and K. M. Ryan, Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity, Genes Dev., 2009, 23, 11, 1283–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Sun, X. Xing, and Q. Liu, {etet al.}, Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells, Int. J. Oncol., 2015, 46, 2, 750–756.

    Article  CAS  PubMed  Google Scholar 

  38. M. B. Gariboldi, E. Taiana, and M. C. Bonzi, {etet al.}, The BH3-mimetic obatoclax reduces HIF-1α levels and HIF-1 transcriptional activity and sensitizes hypoxic colon adenocarcinoma cells to 5-fluorouracil, Cancer Lett., 2015, 364, 2, 156–164.

    Article  CAS  PubMed  Google Scholar 

  39. D. J. Klionsky, The molecular machinery of autophagy: unanswered questions, J. Cell. Sci., 2005, 118, Pt 1, 7–18.

    Article  CAS  PubMed  Google Scholar 

  40. J. M. Brown, and W. R. Wilson, Exploiting tumour hypoxia in cancer treatment, Nat. Rev. Cancer., 2004, 4, 6, 437–447.

    Article  CAS  PubMed  Google Scholar 

  41. Z. Ji, G. Yang, and S. Shahzidi, {etet al.}, Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy, Cancer Lett., 2006, 244, 2, 182–189.

    Article  CAS  PubMed  Google Scholar 

  42. A. Casas, G. Di Venosa, and T. Hasan, Al Batlle, Mechanisms of resistance to photodynamic therapy, Curr. Med. Chem., 2011, 18, 16, 2486–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. X.-H. Ma, S. Piao, and D. Wang, {etet al.}, Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma, Clin. Cancer Res., 2011, 17, 10, 3478–3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Mitra, S. E. Cassar, D. J. Niles, J. A. Puskas, J. G. Frelinger, and T. H. Foster, Photodynamic therapy mediates the oxygen-independent activation of hypoxia-inducible factor 1alpha, Mol. Cancer Ther., 2006, 5, 12, 3268–3274.

    Article  CAS  PubMed  Google Scholar 

  45. L. Milla Sanabria, M. E. Rodríguez, and I. S. Cogno, {etet al.}, Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment, Biochim. Biophys. Acta, 2013, 1835, 1, 36–45.

    CAS  PubMed  Google Scholar 

  46. A. Tittarelli, B. Janji, K. Van Moer, M. Z. Noman, and S. Chouaib, The selective degradation of synaptic connexin 43 protein by hypoxia-induced autophagy impairs natural killer cell-mediated tumor cell killing, J. Biol. Chem., 2015, 290, 39, 23670–23679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. J. Klionsky, K. Abdelmohsen, and A. Abe, {etet al.}, Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition), Autophagy, 2016, 12, 1, 1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  48. B. Levine, and J. Yuan, Autophagy in cell death: an innocent convict?, J. Clin. Invest., 2005, 115, 10, 2679–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. P. Maycotte, S. Aryal, C. T. Cummings, J. Thorburn, M. J. Morgan, and A. Thorburn, Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy, Autophagy., 2012, 8, 2, 200–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. C. Fan, W. Wang, B. Zhao, S. Zhang, and J. Miao, Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells, Bioorg. Med. Chem., 2006, 14, 9, 3218–3222.

    Article  CAS  PubMed  Google Scholar 

  51. T. Liu, L. Zhao, and W. Chen, {etet al.}, Inactivation of von Hippel-Lindau increases ovarian cancer cell aggressiveness through the HIF1α/miR-210/VMP1 signaling pathway, Int. J. Mol. Med., 2014, 33, 5, 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  52. R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil, and Z. Elazar, Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4, EMBO J., 2007, 26, 7, 1749–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, Oxygen consumption and diffusion effects in photodynamic therapy, Radiat. Res., 1991, 126, 3, 296–303.

    Article  CAS  PubMed  Google Scholar 

  54. T. M. Sitnik, J. A. Hampton, and B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate, Br. J. Cancer., 1998, 77, 9, 1386–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S.-N. Jung, W. K. Yang, and J. Kim, {etet al.}, Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells, Carcinogenesis, 2008, 29, 4, 713–721.

    Article  CAS  PubMed  Google Scholar 

  56. J. Y. Lee, S. A. Hirota, L. E. Glover, G. D. Armstrong, P. L. Beck, and J. A. MacDonald, Effects of nitric oxide and reactive oxygen species on HIF-1a stabilization following Clostridium difficile toxin exposure of the Caco-2 epithelial cell line, Cell. Physiol. Biochem., 2013, 32, 2, 417–430.

    Article  CAS  PubMed  Google Scholar 

  57. Y.-N. Li, M.-M. Xi, Y. Guo, C.-X. Hai, W.-L. Yang, and X.-J. Qin, NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity, Toxicol. Lett., 2014, 224, 2, 165–174.

    Article  CAS  PubMed  Google Scholar 

  58. M. Dewaele, W. Martinet, and N. Rubio, {etet al.}, Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage, J. Cell. Mol. Med., 2011, 15, 6, 1402–1414.

    Article  CAS  PubMed  Google Scholar 

  59. P. Tu, Q. Huang, and Y. Ou, {etet al.}, Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway, Oncol. Rep., 2016, 35, 6, 3209–3215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. H. Choi, C. Merceron, and L. Mangiavini, {etet al.}, Hypoxia promotes noncanonical autophagy in nucleus pulposus cells independent of MTOR and HIF1A signaling, Autophagy, 2016, 12, 9, 1631–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr Thomas Foster for providing the 5HREhCMV- d2EGFP plasmid, Dr Eric Metzen for providing the pLKO.1-shRNAHIF-1α-1 and PLKO.1-shScrambled plasmids and Dr Edurne Berra for providing the pcDNA3-HA-DN-HIF-1α plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Vaccaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, M.E., Catrinacio, C., Ropolo, A. et al. A novel HIF-1α/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem Photobiol Sci 16, 1631–1642 (2017). https://doi.org/10.1039/c7pp00161d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00161d

Navigation