Skip to main content

Advertisement

Log in

ALA and its clinical impact, from bench to bedside

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

ALA-induced protoporphyrin IX (PpIX) is used for fluorescence diagnosis (ALA-FD) and for fluorescence-guided resection of both (pre)malignant and non-malignant diseases. ALA is also applied in photodynamic therapy (ALA-PDT) of superficial (pre)malignant lesions in dermatology, urology, neurosurgery, otorhinolaryngology, gynecology and gastroenterology. Today, ALA is approved as Levulan® for actinic keratoses, the ALA-methyl ester Metvix® for actinic keratoses and basal cell carcinoma, the ALA-hexyl ester Hexvix® for the diagnosis of bladder cancer and Gliolan® for malignant glioma. The use of ALA for PDT and FD was established around 25 years ago, with most of the fundamental knowledge gained at the “bench” and implemented at the “bedside” due to the diligence of a few researchers within the first 10 years of research. After 1993 ALA research was taken up by many groups. For patient treatment, several factors are relevant. Administered mainly in a topical or oral form, ALA penetrates tissue in a sub-optimal way, which is currently improved by special techniques and the use of ALA-esters. PpIX accumulation is elevated in many malignant tissues, several tissue abnormalities, and in mucosa. It is also found at elevated levels in macrophages, dendritic cells and activated lymphocytes. Following sufficient PpIX accumulation in the target cells, irradiation is carried out which may be accompanied by a burning sensation at the treatment site. Due to a saturation process of PpIX formation and rapid photobleaching during irradiation the risk of overtreatment is relatively low. Pharmacokinetical studies have demonstrated a low systemic photosensitivity and excretion of PpIXvia natural routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Kennedy, Introduction, in: Photodynamic Therapy with ALA: A Clinical Handbook, ed. R. Pottier, B. Krammer, H. Stepp and R. Baumgartner, RSC Publishing, Cambridge, UK, 2006, pp. 3–13.

    Google Scholar 

  2. Q. Peng, K. Berg, J. Moan, M. Kongshaug and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research, Photochem. Photobiol., 1997, 65(2), 235–51.

    Article  CAS  PubMed  Google Scholar 

  3. S. Sassa, S. Schwartz, G. Ruth, G., Accumulation of protoporphyrin IX from delta-aminolevulinic acid in bovine skin fibroblasts with hereditary erythropoietic protoporphyria. A gene-dosage effect, J. Exp. Med., 1981, 153(5), 1094–101.

    Article  CAS  PubMed  Google Scholar 

  4. C. A. Pierach and P. S. Edwards, Neurotoxicity of delta-aminolevulinic acid and porphobilinogen, Expo. Neurom., 1978, 62(3), 810–814.

    Article  CAS  Google Scholar 

  5. R. A. Nicoll, The interaction of porphyrin precursors with GABA receptors in the isolated frog spinal cord, Life Sci., 1976, 19(4), 521–5.

    Article  CAS  PubMed  Google Scholar 

  6. E. Rud, O. Gederaas, A. Hogset and K. Berg, 5-Aminolevulinic acid, but not 5-aminolevulinic acid esters, is transported into adenocarcinoma cells by system BETA transporters, Photochem. Photobiol., 2000, 71(5), 640–7.

    Article  CAS  PubMed  Google Scholar 

  7. M. J. Brennan and R. C. Cantrill, Delta-Aminolaevulinic acid and amino acid neurotransmitters, Mol. Cell Biochem., 1981, 38, 49–58.

    Article  CAS  PubMed  Google Scholar 

  8. A. A. Sima, J. C. Kennedy, D. Blakeslee and D. M. Robertson, Experimental porphyric neuropathy: a preliminary report, Can. J. Neurol. Sci., 1981, 8(2), 105–13.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Shimizu, S. Ida, H. Naruto and G. Urata, Excretion of porphyrins in urine and bile after the administration of delta-aminolevulinic acid, Lab. Clin. Med., 1978, 92(5), 795–802.

    CAS  Google Scholar 

  10. T. Arsov and E. Ivanov, Studies on porphyrin biosynthesis in erythrocytes after incubation with delta-aminolaevulinic acid in patients with acute leukemia, Folia Haematol Int Mag Klin Morphol Blutforsch., 1981, 108(4), 567–73.

    CAS  PubMed  Google Scholar 

  11. Z. Malik and M. Djaldetti, 5-Aminolevulinic acid stimulation of porphyrin and hemoglobin synthesis by uninduced Friend erythroleukemic cells, Cell Differ., 1979, 8(3), 223–33.

    Article  CAS  PubMed  Google Scholar 

  12. D. X. Divaris, J. C. Kennedy and R. H. Pottier, Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence, Am. J. Pathol., 1990, 136, 891–897.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. B. Krammer, Z. Malik, R. Pottier and H. Stepp, Basic Principles, in Photodynamic Therapy with ALA: A Clinical Handbook, ed. R. Pottier, B. Krammer, H. Stepp and R. Baumgartner, RSC Publishing, Cambridge, UK, 2006, pp. 15–77.

    Google Scholar 

  14. R. H. Pottier, Y. F. Chow, J. P. LaPlante, T. G. Truscott, J. C. Kennedy and L. A. Beiner, Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo, Photochem. Photobiol., 1986, 44, 679–687.

    Article  CAS  PubMed  Google Scholar 

  15. J. C. Kennedy and R. H. Pottier, Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy, J. Photochem. Photobiol., B, 1992, 14, 275–292.

    Article  CAS  Google Scholar 

  16. J. C. Kennedy, S. L. Marcus and R. H. Pottier, Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results, J. Clin. Laser Med. Surg., 1996, 14, 289–304.

    Article  CAS  PubMed  Google Scholar 

  17. C. J. Kelty, N. J. Brown, M. W. R. Reed and R. Ackroyd, The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis, Photochem. Photobiol. Sci., 2002, 1, 158–168.

    Article  CAS  PubMed  Google Scholar 

  18. J. C. Kennedy, R. H. Pottier and D. C. Pross, Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience, J. Photochem. Photobiol., B, 1990, 6, 143–148.

    Article  CAS  Google Scholar 

  19. Z. Malik and H. Lugaci, Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins, Br. J. Cancer, 1987, 56, 589–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Q. Peng, J. F. Evensen, C. Rimington and J. Moan, A comparison of different photosensitizing dyes with respect to uptake C3H-tumors and tissues of mice, Cancer Lett., 1987, 36(1), 1–10.

    Article  Google Scholar 

  21. M. El-Far, A. Setate and M. El-Maadawy, Photodynamic therapy with aminolevulinic acid and meso-tetrahydroxyphenylchlorin: first initial clinical experience, Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2371, 236–242.

    Google Scholar 

  22. H. Fukuda, S. Paredes and A. M. Batlle, Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms, Drug Des. Deliv., 1989, 5(2), 133–139.

    CAS  PubMed  Google Scholar 

  23. Z. Malik, B. Ehrenberg and A. Faraggi, Inactivation of erythrocytic, lymphocytic and myelocytic leukemic cells by photoexcitation of endogenous porphyrins, J. Photochem. Photobiol., B, 1989, 4(2), 195–205.

    Article  CAS  Google Scholar 

  24. R. J. Riopelle and J. C. Kennedy, Some aspects of porphyrin neurotoxicity in vitro, Can. J. Physiol. Pharmacol., 1982, 60(5), 707–14.

    Article  CAS  PubMed  Google Scholar 

  25. A. M. Brady and E. A. Lock, Inhibition of ferrochelatase and accumulation of porphyrins in mouse hepatocyte cultures exposed to porphyrinogenic chemicals, Arch. Toxicol., 1992, 66(3), 175–81.

    Article  CAS  PubMed  Google Scholar 

  26. J. Hanania and Z. Malik, The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells, Cancer Lett., 1992, 65(2), 127–31.

    Article  CAS  PubMed  Google Scholar 

  27. J. Bedwell, A. J. MacRobert, D. Phillips, D. and S. G. Bown, Fluorescence distribution and photodynamic effect of ALA-induced PPIX in the DMH rat colonic tumour model, Br. J. Cancer, 1992, 65(6), 818–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. B. A. Goff, R. Bachor, N. Kollias and T. Hasan, Effects of photodynamic therapy with topical application of 5-aminolevulinic acid on normal skin of hairless guinea pigs, J. Photochem. Photobiol., B, 1992, 15(3), 239–51.

    Article  CAS  Google Scholar 

  29. C. S. Loh, A. J. MacRobert, J. Bedwell, J. Regula, N. Krasner and S. G. Bown, Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy, Br. J. Cancer, 1993, 68(1), 41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Washbrook and P. A. Riley, Comparison of delta-aminolaevulinic acid and its methyl ester as an inducer of porphyrin synthesis in cultured cells, Br. J. Cancer, 1997, 75(10), 1417–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. M. Gaullier, K. Berg, Q. Peng, H. Anholt, P. K. Selbo, L. W. Maand and J. Moan, Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture, Cancer Res., 1997, 57(8), 1481–6.

    CAS  PubMed  Google Scholar 

  32. J. Kloek, W. Akkermans, G. M. Beijersbergen van Henegouwen, Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin, Photochem. Photobiol., 1998, 67(1), 150–4.

    Article  CAS  PubMed  Google Scholar 

  33. Q. Peng, J. Moan, T. Warloe, V. Iani, H. B. Steen, A. Bjorseth and J. M. Nesland, Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin, J. Photochem. Photobiol., B, 1996, 34(1), 95–6.

    Article  CAS  Google Scholar 

  34. N. Fotinos, M. A. Campo, F. Popowycz, R. Gurny, N. Lange, N., 5-Aminolevulinic acid derivatives in photomedicine: Characteristics, application and perspectives, Photochem. Photobiol., 2006, 82(4), 994–1015. Review.

    Article  CAS  PubMed  Google Scholar 

  35. H. Stepp, T. Beck, T. Pongratz, T. Meinel, F. W. Kreth, J. C. Tonn and W. Stummer, ALA and malignant glioma: fluorescence-guided resection and photodynamic treatment, J. Environ. Pathol. Toxicol. Oncol., 2007, 26(2), 157–64.

    Article  CAS  PubMed  Google Scholar 

  36. N. C. Zeitouni, A. R. Oseroff and S. Shieh, Photodynamic therapy for nonmelanoma skin cancers. Current review and update, Mol. Immunol., 2003, 17–18, 1133–1136.

    Article  Google Scholar 

  37. M. Grubinger, P. Hammerl, E. Banieghbal and B. Krammer, Accumulation of aminolevulinic acid-induced protoporphyrin IX as a photosensitizer in L-929 cells, in Research Advances in Photochemistry & Photobiology 1, ed. R. M. Mohan, Global Research Network, Kerala, India, 2000, pp. 137–145.

    Google Scholar 

  38. E. A. Hryhorenko, A. R. Oseroff, J. Morgan and K. Rittenhouse-Diakun, Antigen specific and nonspecific modulation of the immune response by aminolevulinic acid based photodynamic therapy, Immunopharmacology, 1998, 40(3), 231–40.

    Article  CAS  PubMed  Google Scholar 

  39. H. S. de Bruijn, B. Kruijt, A. van der Ploeg-van den Heuvel, H. J. Sterenborg and D. J. Robinson, Increase in protoporphyrin IX after 5-aminolevulinic acid based photodynamic therapy is due to local re-synthesis, Photochem. Photobiol. Sci., 2007, 6(8), 857–64.

    Article  PubMed  Google Scholar 

  40. A. Curnov, Potential Future Indications, in Photodynamic Therapy with ALA: A Clinical Handbook, ed. R. Pottier, B. Krammer, H. Stepp and R. Baumgartner, RSC Publishing, Cambridge, UK, 2006, pp. 249–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Krammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krammer, B., Plaetzer, K. ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci 7, 283–289 (2008). https://doi.org/10.1039/b712847a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b712847a

Navigation