Skip to main content

Advertisement

Log in

Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Channelrhodopsin-2 (ChR2), one of the algal light-gatedcation channel rhodopsins, contains five peculiar glutamic acid residues in the N-terminal region corresponding to the second to third transmembrane helices. Here we made systematic mutations of these polar amino acid residues of ChR2 into nonpolar alanine, and evaluated their photocurrent properties. Amongst them, the photocurrent generated by the E97A mutation, ChR2(E97A), was much smaller than expected from its expression. The ChR2(E97A) photocurrent was similar to wild-type ChR2 in the kinetic profiles, the reversal potential and the dependency to the light power density. Our results suggest that the residue E97 is one of the molecular determinants involved in the ion flux regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kateriya, G. Nagel, E. Bamberg and P. Hegemann, “Vision” in single-celled algae, News Physiol Sci, 2004, 19, 133–137.

    CAS  PubMed  Google Scholar 

  2. M. Melkonian and H. Robenek, Eyespot membranes of Chlamydomonas reinhardii: a freeze-fracture study, J Ultrastruct Res, 1980, 72, 90–102.

    Article  CAS  PubMed  Google Scholar 

  3. O. A. Sineshchekov, K. H. Jung and J. L. Spudich, Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii, Proc Natl Acad Sci U S A, 2002, 99, 8689–8694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Suzuki, K. Yamasaki, S. Fujita, K. Oda, M. Iseki, K. Yoshida, M. Watanabe, H. Daiyasu, H. Toh, E. Asamizu, S. Tabata, K. Miura, H. Fukuzawa, S. Nakamura and T. Takahashi, Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization, Biochem Biophys Res Commun, 2003, 301, 711–717.

    Article  CAS  PubMed  Google Scholar 

  5. G. Nagel, D. Ollig, M. Fuhrmann, S. Kateriya, A. M. Musti, E. Bamberg and P. Hegemann, Channelrhodopsin-1: a light-gated proton channel in green algae, Science, 2002, 296, 2395–2398.

    Article  CAS  PubMed  Google Scholar 

  6. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann and E. Bamberg, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc Natl Acad Sci U S A, 2003, 100, 13940–13945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Nagel, T. Szellas, S. Kateriya, N. Adeishvili, P. Hegemann and E. Bamberg, Channelrhodopsins: directly light-gated cation channels, Biochem Soc Trans, 2005, 33, 863–866.

    Article  CAS  PubMed  Google Scholar 

  8. T. Ishizuka, M. Kakuda, R. Araki and H. Yawo, Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels, Neurosci Res, 2006, 54, 85–94.

    Article  CAS  PubMed  Google Scholar 

  9. X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser and S. Herlitze, Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin, Proc Natl Acad Sci U S A, 2005, 102, 17816–17821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel and K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity, Nat Neurosci, 2005, 8, 1263–1268.

    Article  CAS  PubMed  Google Scholar 

  11. P. Hegemann, Algal sensory photoreceptors, Annu Rev Plant Biol, 2008, 59, 167–189.

    Article  CAS  PubMed  Google Scholar 

  12. C. Bamann, T. Kirsch, G. Nagel and E. Bamberg, Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function, J Mol Biol, 2008, 375, 686–694.

    Article  CAS  PubMed  Google Scholar 

  13. O. P. Ernst, P. A. Sanchez Murcia, P. Daldrop, S. P. Tsunoda, S. Kateriya and P. Hegemann, Photoactivation of channelrhodopsin, J Biol Chem, 2008, 283, 1637–1643.

    Article  CAS  PubMed  Google Scholar 

  14. F. Zhang, M. Prigge, F. Beyriere, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann and K. Deisseroth, Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri, Nat Neurosci, 2008, 11, 631–633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. L. Adamian, Z. Ouyang, Y. Y. Tseng and J. Liang, Evolutionary patterns of retinal-binding pockets of type I rhodopsins and their functions, Photochem Photobiol, 2006, 82, 1426–1435.

    CAS  PubMed  Google Scholar 

  16. E. Pebay-Peyroula, A. Royant, E. M. Landau and J. Navarro, Structural basis for sensory rhodopsin function, Biochim Biophys Acta, 2002, 1565, 196–205.

    Article  CAS  PubMed  Google Scholar 

  17. P. Hegemann, S. Ehlenbeck and D. Gradmann, Multiple photocycles of channelrhodopsin, Biophys J, 2005, 89, 3911–3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. K. Lanyi, Mechanism of ion transport across membranes - bacteriorhodopsin as a prototype for proton pumps, J Biol Chem, 1997, 272, 31209–31212.

    Article  CAS  PubMed  Google Scholar 

  19. R. Neutze, E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro and E. M. Landau, Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport, Biochim Biophys Acta, 2002, 1565, 144–167.

    Article  CAS  PubMed  Google Scholar 

  20. T. Mogi, L. J. Stern, T. Marti, B. H. Chao and H. G. Khorana, Asparitic acid substitutions affect proton translocation by bacteriorhodopsin, Proc Natl Acad Sci USA, 1988, 85, 4148–4152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Kataoka, H. Kamikubo, F. Tokunaga, L. S. Brown, Y. Yamazaki, A. Maeda, M. Sheves, R. Needleman and J. K. Lanyi, Energy coupling in an ion pump - the reprotonation switch of bacteriorhodopsin, J Mol Biol, 1994, 243, 621–638.

    Article  CAS  PubMed  Google Scholar 

  22. L. S. Brown, H. Kamikubo, L. Zimányi, M. Kataoka, F. Tokunaga, P. Verdegem, J. Lugtenburg and J. K. Lanyi, A local electrostatic change is the cause of the large-scale protein conformation shift in bacteriorhodopsin, Proc Natl Acad Sci USA, 1997, 94, 5040–5044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P. Berthold, S. P. Tsunoda, O. P. Ernst, W. Mages, D. Gradmann and P. Hegemann, Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization, Plant Cell, 2008, 20, 1665–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Hille, Ion channels of excitable membranes, third ed., Sinauer Associates, Massachusetts, USA, 2001.

    Google Scholar 

  25. R. MacKinnon, Pore loops: an emerging theme in ion channel structure, Neuron, 1995, 14, 889–892.

    Article  CAS  PubMed  Google Scholar 

  26. G. Owsianik, K. Talavera, T. Voets and B. Nilius, Permeation and selectivity of TRP channels, Annu Rev Physiol, 2006, 68, 685–717.

    Article  CAS  PubMed  Google Scholar 

  27. P. H. Seeburg, F. Single, T. Kuner, M. Higuchi and R. Sprengel, Genetic manipulation of key determinants of ion flow in glutamate receptor channels in the mouse, Brain Res, 2001, 907, 233–243.

    Article  CAS  PubMed  Google Scholar 

  28. M. H. Akabas, D. A. Stauffer, M. Xu and A. Karlin, Acetylcholine receptor channel structure probed in cysteine-substitution mutants, Science, 1992, 258, 307–310.

    Article  CAS  PubMed  Google Scholar 

  29. H. Luecke, B. Schobert, J. K. Lanyi, E. N. Spudich and J. L. Spudich, Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction, Science, 2001, 293, 1499–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Miyazawa, Y. Fujiyoshi and N. Unwin, Structure and gating mechanism of the acetylcholine receptor pore, Nature, 2003, 423, 949–955.

    Article  CAS  PubMed  Google Scholar 

  31. D. Huber, L. Petreanu, N. Ghitani, S. Ranade, T. Hromadka, Z. Mainen and K. Svoboda, Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice, Nature, 2008, 451, 61–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. J. Kuhlman and Z. J. Huang, High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression, PLoS ONE, 2008, 3, e2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. L. Petreanu, D. Huber, A. Sobczyk and K. Svoboda, Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections, Nat Neurosci, 2007, 10, 663–668.

    Article  CAS  PubMed  Google Scholar 

  34. N. Toni, D. A. Laplagne, C. Zhao, G. Lombardi, C. E. Ribak, F. H. Gage and A. F. Schinder, Neurons born in the adult dentate gyrus form functional synapses with target cells, Nat Neurosci, 2008, 11, 901–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y. P. Zhang and T. G. Oertner, Optical induction of synaptic plasticity using a light-sensitive channel, Nat Methods, 2007, 4, 139–141.

    Article  CAS  PubMed  Google Scholar 

  36. G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg and A. Gottschalk, Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses, Curr Biol, 2005, 15, 2279–2284.

    Article  CAS  PubMed  Google Scholar 

  37. A. D. Douglass, S. Kraves, K. Deisseroth, A. F. Schier and F. Engert, Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons, Curr Biol, 2008, 18, 1133–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. R. Arenkiel, J. Peca, I. G. Davison, C. Feliciano, K. Deisseroth, G. J. Augustine, M. D. Ehlers and G. Feng, In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2, Neuron, 2007, 54, 205–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Bi, J. Cui, Y. P. Ma, E. Olshevskaya, M. Pu, A. M. Dizhoor and Z. H. Pan, Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration, Neuron, 2006, 50, 23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Herlitze and L. T. Landmesser, New optical tools for controlling neuronal activity, Curr Opin Neurobiol, 2007, 17, 87–94.

    Article  CAS  PubMed  Google Scholar 

  41. P. S. Lagali, D. Balya, G. B. Awatramani, T. A. Munch, D. S. Kim, V. Busskamp, C. L. Cepko and B. Roska, Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration, Nat Neurosci, 2008, 11, 667–675.

    Article  CAS  PubMed  Google Scholar 

  42. H. Tomita, E. Sugano, H. Yawo, T. Ishizuka, H. Isago, S. Narikawa, S. Kügler and M. Tamai, Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer, Invest Ophthalmol Vis Sci, 2007, 48, 3821–3826.

    Article  PubMed  Google Scholar 

  43. H. Wang, Y. Sugiyama, T. Hikima, E. Sugano, H. Tomita, T. Takahashi, T. Ishizuka and H. Yawo, J. Biol. Chem. 10.1074/jbc.M807632200

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Yawo.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/b815762f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiyama, Y., Wang, H., Hikima, T. et al. Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2. Photochem Photobiol Sci 8, 328–336 (2009). https://doi.org/10.1039/b815762f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b815762f

Navigation