Skip to main content
Log in

1α,25 Dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

DNA damage induced by ultraviolet radiation is the key initiator for skin carcinogenesis since mutations may arise from the photoproducts and it also contributes to photoimmune suppression. The active vitamin D hormone, 1α,25 dihydroxyvitamin D3 (1,25(OH)2D3) reduces thymine dimers, the major photoproduct found in human skin after UV exposure, and suppresses the accumulation of nitric oxide derivatives that lead to more toxic reactive nitrogen species (RNS). We examined whether other forms of DNA damage are reduced by 1,25(OH)2D3, and hypothesized that photoprotection by 1,25(OH)2D3 is, in part, due to the suppression of various forms of promutagenic DNA damage, including thymine dimers, through a reduction of genotoxic RNS. Different forms of UV-induced DNA damage were investigated in irradiated skin cells treated with or without 1,25(OH)2D3, or inhibitors of metabolism and inducible nitric oxide synthase. Keratinocytes were also treated with nitric oxide donors in the absence of UV light. DNA damage was assessed by comet assay incorporating site specific DNA repair endonucleases, and by immunohistochemistry using antibodies to thymine dimers or 8-oxo-7,8-dihydro-2′-deoxyguanosine, and quantified by image analysis. Strand breaks in T4 endonuclease V, endonuclease IV and human 8-oxoguanine DNA glycosylase digests increased more than 2-fold in UV irradiated human keratinocytes, and were reduced by 1,25(OH)2D3 treatment after UV exposure, and also by low temperature, sodium azide and an inhibitor of inducible nitric oxide synthase. Conversely, nitric oxide donors induced all three types of DNA damage in the absence of UV. We present data to show that 1,25(OH)2D3 protects skin cells from at least three forms of UV-induced DNA damage, and provide further evidence to support the proposal that a reduction in RNS by 1,25(OH)2D3 is a likely mechanism for its photoprotective effect against oxidative and nitrative DNA damage, as well as cyclobutane pyrimidine dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPD:

cyclobutane pyrimidine dimer

Endo4:

endonuclease IV

1,25(OH)2D3:

1α,25 dihydroxyvitamin D3

8-oxodG:

8-oxo-7,8-dihydro-2′-deoxyguanosine

hOGG:

human 8-oxoguanine DNA glycosylase

NO:

nitric oxide

NOS:

nitric oxide synthase

NER:

nucleotide excision repair

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

T4N5:

T4 endonuclease V

SIN:

Sin 1 chloride

SNP:

sodium nitroprusside

References

  1. D. Bruch-Gerharz, T. Ruzicka, V. Kolb-Bachofen, Nitric oxide in human skin: current status and future prospects, J. Invest. Dermatol., 1998, 110, 1–7.

    Article  CAS  PubMed  Google Scholar 

  2. G. Deliconstantinos, V. Villiotou and J. C. Stravrides, Release by ultraviolet B (u.v.B) radiation of nitric oxide (NO) from human keratinocytes: a potential role for nitric oxide in erythema production, Br. J. Pharmacol., 1995, 114, 1257–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. M. Cals-Grierson and A. D. Ormerod, Nitric oxide function in the skin, Nitric Oxide: Biol. Chem., 2004, 10, 179–193.

    Article  CAS  Google Scholar 

  4. M. Mowbray, S. McLintock, R. Weerakoon, N. Lomatschinsky, S. Jones, A. G. Rossi and R. B. Weller, Enzyme-independent NO stores in human skin: quantification and influence of UV radiation, J. Invest. Dermatol., 2008, 129, 834–842.

    Article  PubMed  CAS  Google Scholar 

  5. A. N. Paunel, A. Dejam, S. Thelen, M. Kirsch, M. Horstjann, P. Gharini, M. Murtz, M. Kelm, H. de Groot, V. Kolb-Bachofen and C. V. Suschek, Enzyme-independent nitric oxide formation during UVA challenge of human skin: characterization, molecular sources, and mechanisms, Free Radical Biol. Med., 2005, 38, 606–615.

    Article  CAS  Google Scholar 

  6. P. Pacher, J. S. Beckman and L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 2007, 87, 315–424.

    Article  CAS  PubMed  Google Scholar 

  7. M. S. Cooke, I. D. Podmore, N. Mistry, M. D. Evans, K. E. Herbert, H. R. Griffiths and J. Lunec, Immunochemical detection of UV-induced DNA damage and repair, J. Immunol. Methods, 2003, 280, 125–133.

    Article  CAS  PubMed  Google Scholar 

  8. T. Douki, M. Court, S. Sauvaigo, F. Odin and J. Cadet, Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry, J. Biol. Chem., 2000, 275, 11678–11685.

    Article  CAS  PubMed  Google Scholar 

  9. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. I. Pattison and M. J. Davies, Actions of ultraviolet light on cellular structures, Exs, 2006, 131–157.

    Google Scholar 

  11. J. L. Ravanat, T. Douki and J. Cadet, Direct and indirect effects of UV radiation on DNA and its components, J. Photochem. Photobiol. B, Biol., 2001, 63, 88–102.

    Article  CAS  Google Scholar 

  12. L. A. Applegate, C. Scaletta, R. Panizzon, H. Niggli and E. Frenk, In vivo induction of pyrimidine dimers in human skin by UVA radiation: initiation of cell damage and/or intercellular communication?, Int. J. Mol. Med., 1999, 3, 467–472.

    CAS  PubMed  Google Scholar 

  13. P. J. Rochette, J. P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky and E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 135–142.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski and P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Tewari, R. P. Sarkany and A. R. Young, UVA1 induces cyclobutane pyrimidine dimers but not 6–4 photoproducts in human skin in vivo, J. Invest. Dermatol., 2012, 132, 394–400.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Lamola, Production of pyrimidine dimers in DNA in the dark, Biochem. Biophys. Res. Commun., 1971, 43, 893–898.

    Article  CAS  PubMed  Google Scholar 

  18. V. Lhiaubet-Vallet, M. C. Cuquerella, J. V. Castell, F. Bosca and M. A. Miranda, Triplet excited fluoroquinolones as mediators for thymine cyclobutane dimer formation in DNA, J. Phys. Chem. B, 2007, 111, 7409–7414.

    Article  CAS  PubMed  Google Scholar 

  19. E. Kvam and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18, 2379–2384.

    Article  CAS  PubMed  Google Scholar 

  20. J. Cadet, E. Sage and T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., 2005, 571, 3–17.

    Article  CAS  PubMed  Google Scholar 

  21. G. M. Halliday, Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis, Mutat. Res., 2005, 571, 107–120.

    Article  CAS  PubMed  Google Scholar 

  22. S. Burney, J. L. Caulfield, J. C. Niles, J. S. Wishnok and S. R. Tannenbaum, The chemistry of DNA damage from nitric oxide and peroxynitrite, Mutat. Res., 1999, 424, 37–49.

    Article  CAS  PubMed  Google Scholar 

  23. H. Ohshima, T. Sawa and T. Akaike, 8-Nitroguanine, a product of nitrative DNA damage caused by reactive nitrogen species: formation, occurrence, and implications in inflammation and carcinogenesis, Antioxid. Redox Signal., 2006, 8, 1033–1045.

    Article  CAS  PubMed  Google Scholar 

  24. A. van der Vliet, J. P. Eiserich, B. Halliwell and C. E. Cross, Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite, J. Biol. Chem., 1997, 272, 7617–7625.

    Article  PubMed  Google Scholar 

  25. D. A. Wink, K. S. Kasprzak, C. M. Maragos, R. K. Elespuru, M. Misra, T. M. Dunams, T. A. Cebula, W. H. Koch, A. W. Andrews and J. S. Allen, DNA deaminating ability and genotoxicity of nitric oxide and its progenitors, Science, 1991, 254, 1001–1003.

    Article  CAS  PubMed  Google Scholar 

  26. M. Jaiswal, N. F. LaRusso, L. J. Burgart and G. J. Gores, Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism, Cancer Res., 2000, 60, 184–190.

    CAS  PubMed  Google Scholar 

  27. D. T. Bau, J. R. Gurr and K. Y. Jan, Nitric oxide is involved in arsenite inhibition of pyrimidine dimer excision, Carcinogenesis, 2001, 22, 709–716.

    Article  CAS  PubMed  Google Scholar 

  28. L. A. Applegate, R. D. Ley, J. Alcalay and M. L. Kripke, Identification of the molecular target for the suppression of contact hypersensitivity by ultraviolet radiation, J. Exp. Med., 1989, 170, 1117–1131.

    Article  CAS  PubMed  Google Scholar 

  29. G. M. Halliday, Common links among the pathways leading to UV-induced immunosuppression, J. Invest. Dermatol., 2010, 130, 1209–1212.

    Article  CAS  PubMed  Google Scholar 

  30. M. L. Kripke, P. A. Cox, L. G. Alas and D. B. Yarosh, Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, (16) 7516–7520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. D. Bikle, M. K. Nemanic, J. O. Whitney and P. W. Elias, Neonatal human foreskin keratinocytes produce 1,25-dihydroxyvitamin D3, Biochemistry, 1986, 25, 1545–1548.

    Article  CAS  PubMed  Google Scholar 

  32. B. Lehmann, T. Genehr, P. Knuschke, J. Pietzsch and M. Meurer, UVB-induced conversion of 7-dehydrocholesterol to 1α,25-dihydroxyvitamin D3 in an in vitro human skin equivalent model, J. Invest. Dermatol., 2001, 117, 1179–1185.

    Article  CAS  PubMed  Google Scholar 

  33. B. Lehmann, P. Knuschke and M. Meurer, A novel pathway for hormonally active calcitriol, Horm. Res., 2000, 54, 312–315.

    CAS  PubMed  Google Scholar 

  34. R. S. Mason, K. M. Dixon, V. B. Sequeira and C. Gordon-Thomson, Sunlight Protection by Vitamin D Compounds, in Vitamin D, ed. D. Feldman, J. W. Pike and J. S. Adams, 3rd edn, Academic Press, Boston, 2011, ch. 100.

    Google Scholar 

  35. D. L. Damian, Y. J. Kim, K. M. Dixon, G. M. Halliday, A. Javeri and R. S. Mason, Topical calcitriol protects from UV-induced genetic damage but suppresses cutaneous immunity in humans, Exp. Dermatol., 2010, 19, e23–e30.

    Article  PubMed  Google Scholar 

  36. P. De Haes, M. Garmyn, A. Verstuyf, P. De Clercq, M. Vandewalle, H. Degreef, K. Vantieghem, R. Bouillon and S. Segaert, 1,25-Dihydroxyvitamin D3 and analogues protect primary human keratinocytes against UVB-induced DNA damage, J. Photochem. Photobiol. B: Biol., 2005, 78, 141–148.

    Article  CAS  Google Scholar 

  37. K. M. Dixon, S. S. Deo, A. W. Norman, J. E. Bishop, G. M. Halliday, V. E. Reeve and R. S. Mason, In vivo relevance for photoprotection by the vitamin D rapid response pathway, J. Steroid Biochem. Mol. Biol., 2007, 103, 451–456.

    Article  CAS  PubMed  Google Scholar 

  38. K. M. Dixon, S. S. Deo, G. Wong, M. Slater, A. W. Norman, J. E. Bishop, G. H. Posner, S. Ishizuka, G. M. Halliday, V. E. Reeve and R. S. Mason, Skin cancer prevention: a possible role of 1,25 dihydroxyvitamin D3 and its analogs, J. Steroid Biochem. Mol. Biol., 2005, 97, 137–143.

    Article  CAS  PubMed  Google Scholar 

  39. R. Gupta, K. M. Dixon, S. S. Deo, C. J. Holliday, M. Slater, G. M. Halliday, V. E. Reeve and R. S. Mason, Photoprotection by 1,25 dihydroxyvitamin D3 is associated with an increase in p53 and a decrease in nitric oxide products, J. Invest. Dermatol., 2007, 127, 707–715.

    Article  CAS  PubMed  Google Scholar 

  40. J. Lee and J. I. Youn, The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocyte and its mechanism of action, J. Dermatol. Sci., 1998, 18, 11–18.

    Article  CAS  PubMed  Google Scholar 

  41. R. S. Mason, V. B. Sequeira, K. M. Dixon, C. Gordon-Thomson,, K. Pobre, A. Dilley, M. T. Mizwicki, A. W. Norman, D. Feldman, G. M. Halliday and V. E. Reeve, Photoprotection by 1α,25-dihydroxyvitamin D and analogs: further studies on mechanisms and implications for UV-damage, J. Steroid Biochem. Mol. Biol., 2010, 121, 164–168.

    Article  CAS  PubMed  Google Scholar 

  42. G. Wong, R. Gupta, K. M. Dixon, S. S. Deo, S. M. Choong, G. M. Halliday, J. E. Bishop, S. Ishizuka, A. W. Norman, G. H. Posner and R. S. Mason, 1,25-Dihydroxyvitamin D and three low-calcemic analogs decrease UV-induced DNA damage via the rapid response pathway, J. Steroid Biochem. Mol. Biol., 2004, 89–90, 567–570.

    Article  PubMed  CAS  Google Scholar 

  43. L. Roza, K. J. van der Wulp, S. J. MacFarlane, P. H. Lohman and R. A. Baan, Detection of cyclobutane thymine dimers in DNA of human cells with monoclonal antibodies raised against a thymine dimer-containing tetranucleotide, Photochem. Photobiol., 1988, 48, 627–633.

    Article  CAS  PubMed  Google Scholar 

  44. K. M. Dixon, A. W. Norman, V. B. Sequeira, R. Mohan, M. S. Rybchyn, V. E. Reeve, G. M. Halliday and R. S. Mason, 1α,25(OH)2-vitamin D and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin carcinogenesis, Cancer Prev. Res. (Phila), 2011, 4, 1485–1494.

    Article  CAS  Google Scholar 

  45. K. M. Dixon, V. B. Sequeira, A. J. Camp and R. S. Mason, Vitamin D-fence, Photochem. Photobiol. Sci., 2010, 9, 564–570.

    Article  CAS  PubMed  Google Scholar 

  46. M. Cario-Andre, C. Pain, Y. Gall, J. Ginestar, O. Nikaido and A. Taieb, Studies on epidermis reconstructed with and without melanocytes: melanocytes prevent sunburn cell formation but not appearance of DNA damaged cells in fair-skinned Caucasians, J. Invest. Dermatol., 2000, 115, 193–199.

    Article  CAS  PubMed  Google Scholar 

  47. Y. P. Lu, Y. R. Lou, P. Yen, D. Mitchell, M. T. Huang and A. H. Conney, Time course for early adaptive responses to ultraviolet B light in the epidermis of SKH-1 mice, Cancer Res., 1999, 59, 4591–4602.

    CAS  PubMed  Google Scholar 

  48. E. Mullaart, The removal of UV-induced pyrimidine dimers from DNA of rat skin cells in vitro and in vivo in relation to aging, Exp. Cell Res., 1989, 180, 569–573.

    Article  PubMed  Google Scholar 

  49. X. Qin, Detection of active UV-photoproduct repair in monkey skin in vivo by quantitative immunohistochemistry, Cancer Lett., 1994, 83, 291–298.

    Article  CAS  PubMed  Google Scholar 

  50. A. A. Vink, R. J. Berg, F. R. de Gruijl, P. H. Lohman, L. Roza and R. A. Baan, Detection of thymine dimers in suprabasal and basal cells of chronically UV-B exposed hairless mice, J. Invest. Dermatol., 1993, 100, 795–799.

    Article  CAS  PubMed  Google Scholar 

  51. D. L. Mitchell, J. E. Cleaver and J. H. Epstein, Repair of pyrimidine(6–4)pyrimidone photoproducts in mouse skin, J. Invest. Dermatol., 1990, 95, 55–59.

    Article  CAS  PubMed  Google Scholar 

  52. A. R. Collins, The comet assay for DNA damage and repair: principles, applications, and limitations, Mol. Biotechnol., 2004, 26, 249–261.

    Article  CAS  PubMed  Google Scholar 

  53. N. S. Dissanayake and R. S. Mason, Modulation of skin cell functions by transforming growth factor-beta1 and ACTH after ultraviolet irradiation, J. Endocrinol., 1998, 159, 153–163.

    Article  CAS  PubMed  Google Scholar 

  54. C. Gordon-Thomson, J. Jones, R. S. Mason and G. P. Moore, ErbB receptors mediate both migratory and proliferative activities in human melanocytes and melanoma cells, Melanoma Res., 2005, 15, 21–28.

    Article  CAS  PubMed  Google Scholar 

  55. A. Javeri, J. G. Lyons, X. X. Huang and G. M. Halliday, Downregulation of Cockayne syndrome B protein reduces human 8-oxoguanine DNA glycosylase-1 expression and repair of UV radiation-induced 8-oxo-7,8-dihydro-2′-deoxyguanine, Cancer Sci., 2011, 102, 1651–1658.

    Article  CAS  PubMed  Google Scholar 

  56. E. P. Garvey, J. A. Oplinger, E. S. Furfine, R. J. Kiff, F. Laszlo, B. J. Whittle and R. G. Knowles, 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo, J. Biol. Chem., 1997, 272, 4959–4963.

    Article  CAS  PubMed  Google Scholar 

  57. V. Lhiaubet-Vallet, J. Trzcionka, S. Encinas, M. A. Miranda, N. Chouini-Lalanne, The triplet state of a N-phenylphthalimidine with high intersystem crossing efficiency: characterisation by a transient absorption spectroscopy and DNA sensitisation properties, J. Phys. Chem. B, 2004, 108, 14148–14153.

    Article  CAS  Google Scholar 

  58. P. Rauhala, K. P. Mohanakumar, I. Sziraki, A. M. Y. Lin and C. C. Chiueh, S-nitrosothiols and nitric oxide, but not sodium nitroprusside, protect nigrostriatal dopamine neurons against iron-induced oxidative stress in vivo, Synapse, 1996, 23, 58–60.

    Article  CAS  PubMed  Google Scholar 

  59. J. P. E. Spencer, J. Wong, A. Jenner, O. I. Aruoma, C. E. Cross and B. Halliwell, Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3-morpholinosydnonimine, Chem. Res. Toxicol., 1996, 9, 1152–1158.

    Article  CAS  PubMed  Google Scholar 

  60. J. N. Smith and T. P. Dasgupta, Mechanism of nitric oxide release. I. Two-electron reduction of sodium nitroprusside by L-cysteine in aqueous solution, Inorg. React. Mech., 2002, 3, 181–195.

    Article  Google Scholar 

  61. H. Schröder, No nitric oxide for HO-1 from sodium nitroprusside, Mol. Pharmacol., 2006, 69, 1507–1509.

    Article  PubMed  CAS  Google Scholar 

  62. M. Trujillo, M. Naviliat, M. N. Alvarez, G. Peluffo and R. Radi, Peroxynitrite biochemistry: formation, reactions and detection, Analysis, 2000, 28, 518–527.

    CAS  Google Scholar 

  63. M. Davies, Free radicals, oxidants and protein damage, Aust. Chem., 2012, 43, 8–12.

    Google Scholar 

  64. K. Forrester, S. Ambs, S. E. Lupold, R. B. Kapust, E. A. Spillare, W. C. Weinberg, E. Felley-Bosco, X. W. Wang, D. A. Geller, E. Tzeng, T. R. Billiar and C. C. Harris, Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 2442–2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M. Karasawa, J. Hosoi, H. Hashiba, K. Nose, C. Tohyama, E. Abe, T. Suda and T. Kuroki, Regulation of metallothionein gene-expression by 1-α,25-dihydroxyvitamin-D3 in cultured-cells and in mice, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 8810–8813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. M. Karasawa, J. Hosoi, H. Hashiba, K. Nose, C. Tohyama, E. Abe, T. Suda and T. Kuroki, Regulation of metallothionein gene expression by 1α,25-dihydroxyvitamin D3 in cultured cells and in mice, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 8810–8813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. V. Yermilov, J. Rubio, M. Becchi, M. D. Friesen, B. Pignatelli and H. Ohshima, Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro, Carcinogenesis, 1995, 16, 2045–2050.

    Article  CAS  PubMed  Google Scholar 

  68. K. M. Dixon and R. S. Mason, Vitamin D, Int. J. Biochem. Cell Biol., 2009, 41, 982–985.

    Article  CAS  PubMed  Google Scholar 

  69. V. B. Sequeira, M. S. Rybchyn, W. Tongkao-On, C. Gordon-Thomson, P. J. Malloy, I. Nemere, A. W. Norman, V. E. Reeve, G. M. Halliday, D. Feldman and R. S. Mason, The role of the vitamin D receptor and ERp57 in photoprotection by 1α,25-dihydroxyvitamin D3, Mol. Endocrinol., 2012, 26, 574–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. V. B. Sequeira, M. S. Rybchyn, C. Gordon-Thomson, W. Tongkao-on, M. T. Mizwicki, A. W. Norman, V. E. Reeve, G. M. Halliday and R. S. Mason, Opening of chloride channels by 1α,25 dihydroxyvitamin D3 contributes to photoprotection against UVR-induced thymine dimers in keratinocytes, J. Invest. Dermatol., 2012 DOI: 10.1038/jid.2012.343.

    Google Scholar 

  71. S. K. Katiyar, Kinetics of UV light-induced cyclobutane pyrimidine dimers in human skin in vivo: an immunohistochemical analysis of both epidermis and dermis, Clin. Cancer Res., 2000, 6, 3864–3869.

    CAS  PubMed  Google Scholar 

  72. S. Courdavault, C. Baudouin, M. Charveron, B. Canguilhem, A. Favier, J. Cadet and T. Douki, Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations, DNA Repair (Amst), 2005, 4, 836–844.

    Article  CAS  Google Scholar 

  73. U. K. Ehmann, K. H. Cook and E. C. Friedberg, The kinetics of thymine dimer excision in ultraviolet-irradiated human cells, Biophys. J., 1978, 22, 249–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. K. Hemminki, G. Xu, L. Kause, L. M. Koulu, C. Zhao and C. T. Jansen, Demonstration of UV-dimers in human skin DNA in situ 3 weeks after exposure, Carcinogenesis., 2002, 23, 605–609.

    Article  CAS  PubMed  Google Scholar 

  75. W. Schul, J. Jans, Y. M. Rijksen, K. H. Klemann, A. P. Eker, J. de Wit, O. Nikaido, S. Nakajima, A. Yasui, J. H. Hoeijmakers, G. T. van der Horst, Enhanced repair of cyclobutane pyrimidine dimers and improved UV resistance in photolyase transgenic mice, EMBO J., 2002, 21, 4719–4729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. S. K. Demetriou, K. Ona-Vu, A. E. Teichert, J. E. Cleaver, D. D. Bikle and D. H. Oh, Vitamin D receptor mediates DNA repair and is UV inducible in intact epidermis but not in cultured keratinocytes, J. Invest. Dermatol., 2012, 132, 2097–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. P. R. Moll, V. Sander, A. M. FrischaUf and K. Richter, Expression profiling of vitamin D treated primary human keratinocytes, J. Cell. Biochem., 2007, 100, 574–592.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca S. Mason.

Additional information

Contribution to the Vitamin D Update collected papers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon-Thomson, C., Gupta, R., Tongkao-on, W. et al. 1α,25 Dihydroxyvitamin D3 enhances cellular defences against UV-induced oxidative and other forms of DNA damage in skin. Photochem Photobiol Sci 11, 1837–1847 (2012). https://doi.org/10.1039/c2pp25202c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25202c

Navigation