Skip to main content
Log in

Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic inactivation (PDI), the light-induced and photosensitizer-mediated overproduction of reactive oxygen species in microorganisms, represents a convincing approach to treat infections with (multi-resistant) pathogens. Due to its favourable photoactive properties combined with excellent biocompatibility, curcumin derived from the roots of turmeric (Curcuma longa) has been identified as an advantageous photosensitizer for PDI. To overcome the poor water solubility and the rapid decay of the natural substance at physiological pH, we examined the applicability of polyvinylpyrrolidone curcumin (PVP-C) in an acidified aqueous solution (solubility of PVP-C up to 2.7 mM) for photoinactivation of Gram(+) and Gram(−) bacteria. Five micromolar PVP-C incubated for 5 minutes and illuminated using a blue light LED array (435 ± 10 nm, 33.8 J cm−2) resulted in a >6 log10reduction of the number of viable Staphylococcus aureus. At this concentration, longer incubation periods result in a lower phototoxicity, most likely due to degeneration of curcumin. Upon an increase of the PVP-C concentration to 50 μM (incubation for 15 or 25 min) a complete eradication of Staphylococcus aureus can be achieved. As expected for a non-cationic photosensitizer, cell wall permeabilization with CaCl2 prior to addition of 50 μM PVP-C for 15 min is necessary to induce a drop in the count of the Gram(−) Escherichia coli for more than 3 log10. As both constituents of the formulation, curcumin (E number E100) and polyvinylpyrrolidone (E1201), have been approved as food additives, a PDI based on PCP-C might allow for a very sparing clinical application (e.g. for disinfection of wounds) or even for employment in aseptic production of foodstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

DPBS:

Dulbecco’s phosphate buffered saline

i.p.:

Incubation period

MRSA:

Methicillin-resistant Staphylococcus aureus

PDI:

Photodynamic inactivation

PVP:

Polyvinylpyrrolidone

PVP-C:

Polyvinylpyrrolidone curcumin

PS:

Photosensitizer

ROS:

Reactive oxygen species

References

  1. World Health Organization, The evolving threat of antimicrobial resistance: options for action, 2012.

    Google Scholar 

  2. T. Dai, Y. Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections - state of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  3. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  4. T. Maisch, A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment, Mini-Rev. Med. Chem., 2009, 9, 974–983.

    Article  CAS  Google Scholar 

  5. T. G. St Denis, T. Dai, L. Izikson, C. Astrakas, R. R. Anderson, M. R. Hamblin and G. P. Tegos, All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease, Virulence, 2011, 2, 509–520.

    Article  Google Scholar 

  6. A. P. Ribeiro, A. C. Pavarina, L. N. Dovigo, I. L. Brunetti, V. S. Bagnato, C. E. Vergani, C. A. de Souza Costa, Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts, Lasers Med. Sci., 2013, 28, 391–398.

    Article  Google Scholar 

  7. L. N. Dovigo, J. C. Carmello, C. A. de Souza Costa, C. E. Vergani, I. L. Brunetti, V. S. Bagnato and A. C. Pavarina, Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis, Med. Mycol., 2013, 51, 243–251.

    Article  CAS  Google Scholar 

  8. A. S. Garcia-Gomes, J. A. Curvelo, R. M. Soares, A. Ferreira-Pereira, Curcumin acts synergistically with fluconazole to sensitize a clinical isolate of Candida albicans showing a MDR phenotype, Med. Mycol., 2012, 50, 26–32.

    Article  CAS  Google Scholar 

  9. L. N. Dovigo, A. C. Pavarina, A. P. Ribeiro, I. L. Brunetti, C. A. Costa, D. P. Jacomassi, V. S. Bagnato and C. Kurachi, Investigation of the photodynamic effects of curcumin against Candida albicans, Photochem. Photobiol., 2011, 87, 895–903.

    Article  CAS  Google Scholar 

  10. H. Hatcher, R. Planalp, J. Cho, F. M. Torti and S. V. Torti, Curcumin: from ancient medicine to current clinical trials, Cell. Mol. Life Sci., 2008, 65, 1631–1652.

    Article  CAS  Google Scholar 

  11. S. C. Gupta, G. Kismali and B. B. Aggarwal, Curcumin, a component of turmeric: from farm to pharmacy, BioFactors, 2013, 39, 2–13.

    Article  CAS  Google Scholar 

  12. S. C. Gupta, S. Patchva and B. B. Aggarwal, Therapeutic roles of curcumin: lessons learned from clinical trials, AAPS J., 2013, 15, 195–218.

    Article  CAS  Google Scholar 

  13. S. C. Gupta, B. Sung, J. H. Kim, S. Prasad, S. Li and B. B. Aggarwal, Multitargeting by turmeric, the golden spice: from kitchen to clinic, Mol. Nutr. Food Res., 2012, DOI: 10.1002/mnfr.201100741.

    Google Scholar 

  14. H. H. Tonnesen and J. Karlsen, Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution, Z. Lebensm.-Unters. Forsch., 1985, 180, 402–404.

    Article  CAS  Google Scholar 

  15. H. H. Tonnesen, J. Karlsen, G. B. van Henegouwen, Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin, Z. Lebensm.-Unters. Forsch., 1986, 183, 116–122.

    Article  CAS  Google Scholar 

  16. T. Haukvik, E. Bruzell, S. Kristensen and H. H. Tonnesen, Photokilling of bacteria by curcumin in different aqueous preparations. Studies on curcumin and curcuminoids XXXVII, Pharmazie, 2009, 64, 666–673.

    CAS  PubMed  Google Scholar 

  17. H. H. Tonnesen, Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII, Pharmazie, 2002, 57, 820–824.

    CAS  PubMed  Google Scholar 

  18. H. H. Tonnesen, M. Masson and T. Loftsson, Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability, Int. J. Pharm., 2002, 244, 127–135.

    Article  CAS  Google Scholar 

  19. H. H. Tonnesen, Solubility and stability of curcumin in solutions containing alginate and other viscosity modifying macromolecules. Studies of curcumin and curcuminoids. XXX, Pharmazie, 2006, 61, 696–700.

    PubMed  Google Scholar 

  20. A. B. Hegge, T. Andersen, J. E. Melvik, E. Bruzell, S. Kristensen and H. H. Tonnesen, Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: studies on curcumin and curcuminoides XLII, J. Pharm. Sci., 2011, 100, 174–185.

    Article  CAS  Google Scholar 

  21. A. B. Hegge, T. Andersen, J. E. Melvik, S. Kristensen and H. H. Tonnesen, Evaluation of novel alginate foams as drug delivery systems in antimicrobial photodynamic therapy (aPDT) of infected wounds - an in vitro study: studies on curcumin and curcuminoides XL, J. Pharm. Sci., 2010, 99, 3499–3513.

    Article  CAS  Google Scholar 

  22. A. B. Hegge, T. T. Nielsen, K. L. Larsen, E. Bruzell and H. H. Tonnesen, Impact of curcumin supersaturation in antibacterial photodynamic therapy - effect of cyclodextrin type and amount: studies on curcumin and curcuminoides XLV, J. Pharm. Sci., 2012, 101, 1524–1537.

    Article  CAS  Google Scholar 

  23. A. B. Hegge, M. Vukicevic, E. Bruzell, S. Kristensen and H. H. Tonnesen, Solid dispersions for preparation of phototoxic supersaturated solutions for antimicrobial photodynamic therapy (aPDT): studies on curcumin and curcuminoides L, Eur. J. Pharm. Biopharm., 2013, 83, 95–105.

    Article  CAS  Google Scholar 

  24. V. Engelhardt, B. Krammer and K. Plaetzer, Antibacterial photodynamic therapy using water-soluble formulations of hypericin or mTHPC is effective in inactivation of Staphylococcus aureus, Photochem. Photobiol. Sci., 2010, 9, 365–369.

    Article  CAS  Google Scholar 

  25. G. Jori, Photodynamic therapy of microbial infections: state of the art and perspectives, J. Environ. Pathol., Toxicol. Oncol., 2006, 25, 505–519.

    Article  Google Scholar 

  26. S. George, M. R. Hamblin and A. Kishen, Uptake pathways of anionic and cationic photosensitizers into bacteria, Photochem. Photobiol. Sci., 2009, 8, 788–795.

    Article  CAS  Google Scholar 

  27. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr and T. Kiesslich, Photophysics and photochemistry of photodynamic therapy: fundamental aspects, Lasers Med. Sci., 2009, 24, 259–268.

    Article  CAS  Google Scholar 

  28. C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motten, R. H. Sik and T. A. Dahl, Spectral and photochemical properties of curcumin, Photochem. Photobiol., 1994, 59, 295–302.

    Article  CAS  Google Scholar 

  29. T. A. Dahl, W. M. McGowan, M. A. Shand and V. S. Srinivasan, Photokilling of bacteria by the natural dye curcumin, Arch. Microbiol., 1989, 151, 183–185.

    Article  CAS  Google Scholar 

  30. T. A. Dahl, P. Bilski, K. J. Reszka and C. F. Chignell, Photocytotoxicity of curcumin, Photochem. Photobiol., 1994, 59, 290–294.

    Article  CAS  Google Scholar 

  31. D. H. Xu, S. Wang, X. T. Mei, X. J. Luo and S. B. Xu, Studies on solubility enhancement of curcumin by Polyvinylpyrrolidione K30, Zhong Yao Cai, 2008, 31, 438–442.

    CAS  PubMed  Google Scholar 

  32. A. Paradkar, A. A. Ambike, B. K. Jadhav and K. R. Mahadik, Characterization of curcumin-PVP solid dispersion obtained by spray drying, Int. J. Pharm., 2004, 271, 281–286.

    Article  CAS  Google Scholar 

  33. L. Nardo, A. Andreoni, M. Masson, T. Haukvik and H. H. Tonnesen, Studies on curcumin and curcuminoids. XXXIX. Photophysical properties of bisdemethoxycurcumin, J. Fluoresc., 2011, 21, 627–635.

    Article  CAS  Google Scholar 

  34. Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  Google Scholar 

  35. S. Gosangari and T. Dyakonov, Enhanced dissolution performance of curcumin with the use of supersaturatable formulations, Pharm. Dev. Technol., 2013, 18, 475–480.

    Article  CAS  Google Scholar 

  36. A. Pieslinger, K. Plaetzer, C. B. Oberdanner, J. Berlanda, H. Mair, B. Krammer and T. Kiesslich, Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: a possible low-cost supplement to conventional light sources for photodynamic treatment, Med. Laser Appl., 2006, 21, 277–283.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristjan Plaetzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, S., Tortik, N., Kubin, A. et al. Back to the roots: photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer. Photochem Photobiol Sci 12, 1795–1802 (2013). https://doi.org/10.1039/c3pp50095k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50095k

Navigation