Skip to main content

Advertisement

Log in

Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent’s ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution’s influence on MB antimicrobial activity. MB was evaluated in deionized water and 0.9% saline solution through optical absorption spectroscopy; the solutions were also analysed via dissolved oxygen availability and reactive oxygen species (ROS) production. Our results show that bacterial reduction was increased in deionized water. Also we demonstrated that saline solution presents less oxygen availability than water, the dimer/monomer ratio for MB in saline is smaller than in water and MB presented a higher production of ROS in water than in 0.9% saline. Together, our results indicate the importance of the ionic strength in the photodynamic effectiveness and point out that this variable must be taken into account to design antimicrobial studies and to evaluate similar studies that might present conflicting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Usacheva, M. C. Teichert and M. A. Biel, Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganism, Lasers Surg. Med., 2001, 29, 165–173.

    Article  CAS  PubMed  Google Scholar 

  2. M. Miyabe, J. C. Junqueira, A. C. da Costa, A. O. Jorge, M. S. Ribeiro and I. S. Feist, Effect of photodynamic therapy on clinical isolates of Staphylococcus spp., Braz. Oral Res., 2011, 25, 230–234.

    Article  PubMed  Google Scholar 

  3. S. C. de Souza, J. C. Junqueira, I. Balducci, C. Y. Koga-Ito, E. Munin and A. O. C. Jorge, Photosensitization of different Candida species by low power laser light, J. Photochem. Photobiol., B, 2006, 83, 34–38.

    Article  Google Scholar 

  4. A. R. Scwingel, A. R. Barcessat, S. C. Núñez and M. S. Ribeiro, Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients, Photomed. Laser Surg., 2012, 30, 429–432.

    Article  CAS  PubMed  Google Scholar 

  5. M. Wainwright and M. S. Baptista, The application of photosensitisers to tropical pathogens in the blood supply, Photodiagn. Photodyn. Ther., 2011, 8, 240–248.

    Article  CAS  Google Scholar 

  6. M. Wainwright, Local treatment of viral disease using photodynamic therapy, Int. J. Antimicrob. Agents, 2003, 21, 510–520.

    Article  CAS  PubMed  Google Scholar 

  7. B. Zeina, J. Greenman, D. Corry and W. M. Purcell, Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro, Br. J. Dermatol., 2002, 146, 568–573.

    Article  CAS  PubMed  Google Scholar 

  8. S. Mitra, C. G. Haidaris, S. B. Snell, B. R. Giesselman, S. M. Hupcher and T. H. Foster, Effective photosensitization and selectivity in vivo of Candida Albicans by meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate, Lasers Surg. Med., 2011, 43, 324–332.

    Article  PubMed  PubMed Central  Google Scholar 

  9. M. N. Usacheva, M. C. Teichert and M. A. Biel, The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria, J. Photochem. Photobiol., B, 2003, 71, 87–98.

    Article  CAS  Google Scholar 

  10. M. Golshan and F. Nakhlis, Can methylene blue only be used in sentinel lymph node biopsy for breast cancer?, Breast J., 2006, 12, 428–430.

    Article  PubMed  Google Scholar 

  11. F. Savino, S. Maccario, C. Guidi, E. Castagno, D. Farinasso, F. Cresi, L. Silvestro and G. C. Mussa, Methemoglobinemia caused by the ingestion of courgette soup given in order to resolve constipation in two formula-fed infants, Ann. Nutr. Metab., 2006, 50, 368–371.

    Article  CAS  PubMed  Google Scholar 

  12. D. P. Betten, R. B. Vohra, M. D. Cook, M. J. Matteucci and R. F. Clark, Antidote use in the critically ill poisoned patient, J. Intensive Care Med., 2006, 21, 255–277.

    Article  PubMed  Google Scholar 

  13. E. Morgounova, Q. Shao, B. J. Hackel, D. D. Thomas and S. Ashkenazi, Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labelled activatable probes, J. Biomed. Opt., 2013, 18, 056004.

    Article  PubMed Central  Google Scholar 

  14. H. C. Junqueira, D. Severino, L. G. Dias, M. S. Gugliotti and M. S. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces, Phys. Chem. Chem. Phys., 2002, 4, 2320–2328.

    CAS  Google Scholar 

  15. D. Severino, H. C. Junqueira, M. Gugliotti and M. S. Baptista, Influence of negatively charged interfaces on the ground and excited states properties of methylene blue, Photochem. Photobiol., 2003, 77, 459–468.

    Article  CAS  PubMed  Google Scholar 

  16. S. George and A. Kishen, Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection, J. Biomed. Opt., 2007, 12, 034029.

    Article  PubMed  Google Scholar 

  17. N. Kashef, S. A. G. Ravaei and G. E. Djavid, Phototoxicity of phenothiazinium dyes against methicillin-resistant Staphylococcus aureus and multi-drug resistant Escherichia coli, Photodiagn. Photodyn. Ther., 2012, 9, 11–15.

    Article  CAS  Google Scholar 

  18. S. F. Vilela, J. C. Junqueira, J. O. Barbosa, M. Majewski, E. Munin and A. O. Jorge, Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study, Arch. Oral Biol., 2012, 57, 704–710.

    Article  CAS  PubMed  Google Scholar 

  19. D. A. Phoenix, Z. Sayed, S. Hussain, F. Harris and M. Wainwright, The phototoxicity of phenothiazinium derivatives against Escherichia coli and Staphylococcus aureus, FEMS Immunol. Med. Microbiol., 2003, 39, 17–22.

    Article  CAS  PubMed  Google Scholar 

  20. M. E. Milanesio, M. B. Spesia, M. P. Cormick and E. N. Durantini, Mechanistic studies on the photodynamic effect induced by a dicationic fullerene C60 derivative on Escherichia coli and Candida albicans cells, Photodiagn. Photodyn. Ther., 2013, 10, 320–327.

    Article  CAS  Google Scholar 

  21. G. P. Tegos and M. R. Hamblin, Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps, Antimicrob. Agents Chemother., 2006, 50, 196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. F. Gad, T. Zahra, T. Hasan and M. R. Hamblin, Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria, Antimicrob. Agents Chemother., 2004, 48, 2173–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Wainwright, D. A. Phoenix, J. Marland, D. R. Warein and F. J. Bolton, A study of photobactericidal activity in the phenothiazinium series, FEMS Immunol. Med. Microbiol., 1997, 19, 75–80.

    Article  CAS  PubMed  Google Scholar 

  24. T. N. Demidova and M. R. Hamblin, Effect of cell-photosensitizer binding and cell density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. N. A. Romanova, L. Y. Brovko, L. Moore, E. Pometun, A. P. Savitsky, N. N. Ugarova and M. W. Griffiths, Assessment of photodynamic destruction of Escherichia coli O157:H7 and Listeria monocytogenes by using ATP bioluminescence, Appl. Environ. Microbiol., 2003, 69, 6393–6398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. Zeina, J. Greenman, W. M. Purcell and B. Das, Killing of cutaneous microbial species by photodynamic therapy, Br. J. Dermatol., 2001, 144, 274–278.

    Article  CAS  PubMed  Google Scholar 

  27. J. G. Jansen, H. E. Schulz and A. W. Lamon, Measurements of dissolved oxygen concentration at water surface, Eng. Sanit. Ambient., 2008, 13, 278–283.

    Article  Google Scholar 

  28. A. S. Garcez, S. C. Núñez, M. S. Baptista, N. A. Daghastanli, R. Itri, M. R. Hamblin and M. S. Ribeiro, Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide, Photochem. Photobiol. Sci., 2011, 10, 483–490.

    Article  CAS  PubMed  Google Scholar 

  29. C. G. Venturini, J. Nicolini, C. Machado and V. G. Machado, Properties and recent applications of cyclodextrin, Quim. Nova, 2008, 31, 360–368.

    Article  CAS  Google Scholar 

  30. F. Piffaretti, A. M. Novello, R. S. Kumar, E. Forte, C. Paulou, P. Nowak-Sliwinska, H. van den Bergh, G. Wagnières, Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy, J. Biomed. Opt., 2012, 17, 115007.

    Article  PubMed  Google Scholar 

  31. T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R. M. Szeimies, W. Bäumler, The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 7223–7228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. B. Farr and T. Kogoma, Oxidative stress responses in Escherichia coli and Salmonella typhimurium, Microbiol. Rev., 1991, 55, 561–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Tavares, S. R. Dias, C. M. Carvalho, M. A. Faustino, J. P. Tomé, M. G. Neves, A. C. Tomé, J. A. Cavaleiro, A. Cunha, N. C. Gomes, E. Alves and A. Almeida, Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  34. L. Huang, Y. Xuan, Y. Koide, T. Zhiyentayev, M. Tanaka and M. R. Hamblin, Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria, Lasers Surg. Med., 2012, 44, 490–499.

    Article  PubMed  PubMed Central  Google Scholar 

  35. X. Ragàs, X. He, M. Agut, M. Roxo-Rosa, A. R. Gonsalves, A. C. Serra and S. Nonell, Singlet oxygen in antimicrobial therapy: photosensitizer-dependent production and decay in E. coli, Molecules, 2013, 18, 2712–2725.

    Article  PubMed  PubMed Central  Google Scholar 

  36. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  PubMed  Google Scholar 

  37. D. Metcalf, C. Robinson, D. Devine and S. Wood, Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation, J. Antimicrob. Chemother., 2006, 58, 190–192.

    Article  CAS  PubMed  Google Scholar 

  38. B. D. Jett, K. L. Hatter, M. M. Huycke and M. S. Gilmore, Simplified agar plate method for quantifying viable bacteria, BioTechniques, 1997, 23, 648–650.

    Article  CAS  PubMed  Google Scholar 

  39. M. E. Simonsen, J. Muff, L. R. Bennedsen, K. P. Kowalski, E. G. Søgaard, Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies, J. Photochem. Photobiol., A, 2010, 216, 244–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Cristina Núñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Núñez, S.C., Garcez, A.S., Kato, I.T. et al. Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue. Photochem Photobiol Sci 13, 595–602 (2014). https://doi.org/10.1039/c3pp50325a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50325a

Navigation