Skip to main content
Log in

Tospoviruses—an Australian perspective

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

The detection, distribution, molecular and biological properties, vector relations and control of tospoviruses present in Australia, including Tomato spotted wilt virus (TSWV), Capsicum chlorosis virus (CaCV) and Iris yellow spot virus (IYSV), are reviewed. TSWV occurs throughout Australia where it has caused serious sporadic epidemics since itwas first described in the 1920s. The frequency and distribution of outbreaks has increased in the 1990s, with the arrival and dispersal of the western flower thrips (Frankliniella occidentalis) being one factor favouring this situation. The crops most frequently and severely affected are capsicum, lettuce, tomato, potato and several species of ornamentals. Minimal differences were found between the nucleocapsid (N) gene amino acid sequences of Australian isolates and these were most closely related to a clade of northern European isolates. CaCV was first detected in Australia in 1999 and is most closely related to Watermelon silver mottle virus, a serogroup IV tospovirus. The natural hosts include capsicum, tomato, peanut and Hoya spp. The virus also occurs in Thailand and Taiwan. IYSV was first found in Australia in 2003, infecting onion and leek, with the distribution in three States suggesting that the virus has been present for some time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott D (2002) ‘IPM strategy to reduce Tomato spotted wilt virus (TSWV) in the dry tropics of north Queensland, VG98006.’ (Horticultural Australia Limited: Sydney)

    Google Scholar 

  • Accotto GP, Nervo G, Acciarri N, Tavella L, Vecchiati M, et al. (2005) Field Evaluation of Tomato Hybrids Engineered with Tomato spotted wilt virus Sequences for Virus Resistance, Agronomic Performance, and Pollen-Mediated Transgene Flow. Phytopathology 95, 800–807.

    PubMed  Google Scholar 

  • Adkins S (2000) Tomato spotted wilt virus — positive steps towards negative success. Molecular Plant Pathology 1, 151–157. doi: 10.1046/j.1364-3703.2000.00022.x

    CAS  PubMed  Google Scholar 

  • Adkins S (2003) Tomato spotted wilt virus. In ‘Compendium of pepper diseases’. (Ed. K Pernezny) pp. 39–40. (APS Press: St Paul)

    Google Scholar 

  • Allen WR, Tehrani B, Luft R (1993) Effect of horticultural oil, insecticidal soap, and film-forming products on the western flower thrips and the tomato spotted wilt virus. Plant Disease 77, 915–918.

    CAS  Google Scholar 

  • Anon. (2000) Grower face losses of millions. In ‘The Bunyip’. March 1, pp. 23. (Gawler, South Australia)

  • Anon. (2004) ‘National Strategy for the Management of Western Flower Thrips and Tomato Spotted Wilt Virus.’ (Department of Primary Industries: Victoria)

  • Aramburu J, Martí M (2003) The occurrence in north-east Spain of a variant of tomato spotted wilt virus (TSWV) that breaks resistance in tomato (Lycopersicon esculentum) containing the Sw-5 gene. Plant Pathology 52, 407. doi: 10.1046/j.1365-3059.2003.00829.x

    Google Scholar 

  • Bald JG, Samuel G (1931) Investigations on ‘spotted wilt’ of tomatoes. II. Australian Council of Scientific and Industrial Research Bulletin 54.

  • Best R (1954) Cross protection by strains of tomato spotted wilt virus and a new theory to explain it. Australian Journal of Biological Sciences 7, 415–424.

    CAS  PubMed  Google Scholar 

  • Best R (1961) Recombination experiments with strains A and E of Tomato Spotted Wilt Virus. Virology 15, 327–339. doi: 10.1016/0042-6822(61)90364-6

    CAS  PubMed  Google Scholar 

  • Best RJ (1968) Tomato spotted wilt virus. Advances in Virus Research 13, 65–146.

    CAS  PubMed  Google Scholar 

  • Best RJ, Gallus HPC (1953) Strains of Tomato spotted wilt virus. The Australian Journal of Science 15, 212–214.

    Google Scholar 

  • Bezerra IC, Resende R, Pozzer L, Nagata T, Kormelink R, nde Avila AC (1999) Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89, 823–830.

    CAS  PubMed  Google Scholar 

  • Black LL, Hobbs HA, Gatti JM Jr (1991) Tomato spotted wilt virus resistance in Capsicum chinense PI 152225 and 159236. Plant Disease 75, 863.

    Google Scholar 

  • Boiteux LS (1995) Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theoretical and Applied Genetics 90, 146–149. doi: 10.1007/ BF00221009

    Google Scholar 

  • Boiteux L, Giordano L (1993) Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71, 151–154. doi: 10.1007/BF00023478

    Google Scholar 

  • Boiteux LS, Nagata T (1993) Susceptibility of Capsicum chinense PI 159236 to tomato spotted wilt virus isolates in Brazil. Plant Disease 77, 210.

    Google Scholar 

  • Boonham N, Smith P, Walsh K, Tame J, Morris J, et al. (2002) The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). Journal of Virological Methods 101, 37–48. doi: 10.1016/S0166-0934(01)00418-9

    CAS  PubMed  Google Scholar 

  • Brittlebank CC (1919) Tomato diseases. Journal of Agriculture, Victoria 17, 231–235.

    Google Scholar 

  • Brommonschenkel SH, Frary A, Tanksley SD (2000) The broadspectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Molecular Plant-Microbe Interactions 13, 1130–1138.

    CAS  PubMed  Google Scholar 

  • Brown SL, Culbreath AK, Todd JW, Gorbet DW, et al. (2005) Development of a Method of Risk Assessment to Facilitate Integrated Management of Spotted Wilt of Peanut. Plant Disease 89, 348.

    Google Scholar 

  • Campbell LR, Robb KL, Ullman DE (2003) The complete tospovirus resource page. Available at http://www.oznet.ksu.edu/tospovirus/ welcome.htm (verified 3 February 2006)

  • Cebolla-Cornejo J, Soler S, Gomar B, Soria MD, Nuez F (2003) Screening Capsicum germplasm for resistance to tomato spotted wilt virus (TSWV). The Annals of Applied Biology 143, 143–152.

    Google Scholar 

  • Cho JJ, Mau RFL, Gonsalves D, Mitchell WC (1986) Reservoir weed hosts of tomato spotted wilt virus. Plant Disease 70, 1014–1017.

    Google Scholar 

  • Cho JJ, Mau RFL, German TL, Hartmann RW, Yudin LS, et al. (1989) A multidisciplinary approach to management of Tomato spotted wilt virus in Hawaii. Plant Disease 73, 375–383.

    Google Scholar 

  • Cho JJ, Custer DM, Brommonschenkel SH, Tanksley SD (1996) Conventional breeding: host-plant resistance and the use of molecular markers to develop resistance to tomato spot wilt virus in vegetables. Acta Horticulturae 73, 367–378.

    Google Scholar 

  • Cho J, Mau RFL, Pang S-Z, Wang M, Gonsalves C, et al. (1998) Approaches for controlling tomato spotted wilt virus. In ‘PlantVirus Disease Control’. (Eds A Hadidi, RK Khetarpal, H Koganezawa) pp. 547–564. (APS Press: St Paul)

    Google Scholar 

  • Chu F-H, Chao C-H, Chung M-H, Chen C-C, Yeh S-D (2001a) Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91, 361–368.

    CAS  PubMed  Google Scholar 

  • Chu F-H, Chao C-H, Peng Y-C, Lin S-S, Chen C-C, Yeh S-D (2001b) Serological and molecular characterization of Peanut chlorotic fanspot virus, a new species of the genus Tospovirus. Phytopathology 91, 856–863.

    CAS  PubMed  Google Scholar 

  • Clift A (2003) Thrips and virus report. National Strategy for the Management of Western Flower Thrips and Tomato Spotted Wilt Virus Newsletter 30, 25.

    Google Scholar 

  • Clift AD, Tesoriero L (2001) Aspects of vector thrips biology and epidemiology of tospoviruses in Australia. In ‘Thrips and Tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera’. (Eds R Marullo, L Mound) pp. 87–91. (Reggio: Calabria, Italy)

    Google Scholar 

  • Conroy RJ, Shirlow NS, Wilson RD, Warring EJ (1949) Tuber transmission of spotted wilt disease. Agricultural Gazette of New South Wales 60, 101–103.

    Google Scholar 

  • Cortês I, Livieratos IC, Derks A, Peters D, Kormelink R (1998) Molecular and serological characterization of iris yellow spot virus, a new and distinct tospovirus species. Phytopathology 88, 1276–1282.

    PubMed  Google Scholar 

  • Cortez I, Saaijer J, Wongjkaew KS, Pereira A-M, Goldbach R, et al. (2001) Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Archives of Virology 146, 265–278. doi: 10.1007/s007050170174

    CAS  PubMed  Google Scholar 

  • Coutts B, Jones R (2002a) Emergency vegetable growers meeting on TSWV and WFT in the Perth metro area. National Strategy for the Management of Western Flower Thrips and Tomato Spotted Wilt Virus 28, 8.

    Google Scholar 

  • Coutts B, Jones R (2002b) New integrated disease management strategies for TSWV. National Management Strategy for the Management of Western Flower Thrips and Tomato Spotted Wilt Virus Newsletter 26, 8–10.

    Google Scholar 

  • Coutts BA, Jones RAC (2005) Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. The Annals of Applied Biology 146, 95–103.

    Google Scholar 

  • Coutts BA, Cousins D, Jones RAC (2003a) Applying thiamethoxam to soil suppresses spread of Tomato spotted wilt virus. In ‘Proceedings of the 8th International Congress of Plant Pathology’. Abstract 23.9, page 303. (International Society for Plant Protection: Christchurch, New Zealand)

    Google Scholar 

  • Coutts BA, McMichael LA, Tesoriero L, Rodoni BC, Wilson CR, et al. (2003b) Iris yellow spot virus found infecting onions in three Australian states. Australasian Plant Pathology 32, 555–557. doi: 10.1071/AP03060

    Google Scholar 

  • Coutts BA, Thomas-Carroll ML, Jones RAC (2004) Patterns of spread of Tomato spotted wilt virus in field crops of lettuce and pepper: spatial dynamics and validation of control measures. The Annals of Applied Biology 145, 231–245.

    Google Scholar 

  • Culbreath AK, Todd JW, Brown SL (2003) Epidemiology and management of tomato spotted wilt in peanut. Annual Review of Phytopathology 41, 53–75. doi: 10.1146/annurev.phyto. 41.052002.095522

    CAS  PubMed  Google Scholar 

  • de Á vila AC, de Haan P, Smeets MLL, Resende R, Kormelink R, et al. (1993) Distinct levels of relationships between tospovirus isolates. Archives of Virology 128, 211–227. doi: 10.1007/BF01309435

    Google Scholar 

  • Dewey RA, Semorile LC, Grau O (1996a) Detection of Tospovirus species by RT-PCR of the N-gene and restriction enzyme digestions of the products. Journal of Virological Methods 56, 19–26. doi: 10.1016/0166-0934(95)01896-4

    CAS  PubMed  Google Scholar 

  • Dewey RA, Semorile LC, Grau O (1996b) Molecular diversity of Tospovirus from Argentina: a summary. Acta Horticulturae 431, 261–263.

    CAS  Google Scholar 

  • Dietzgen RG, Twin J, Talty J, Selladurai S, Carroll ML, et al. (2005) Genetic variability of Tomato spotted wilt virus in Australia and validation of real time RT-PCR for its detection in single and bulked leaf samples. The Annals of Applied Biology 146, 517–530. doi: 10.1111/j.1744-7348.2005.040155.x

    CAS  Google Scholar 

  • Eger JE Jr, Stavisky J, Funderburk JE (1998) Comparative toxicity of spinosad to Frankliniella spp. (Thysanoptera: Thripidae), with notes on a bioassay technique. The Florida Entomologist 81, 547–551.

    CAS  Google Scholar 

  • Eiras M, Resende RO, Missiaggia AA, Á vila ACd (2001) RT-PCR and dot blot hybridization methods for a universal detection of tospoviruses. Fitopatologia Brasileira 26, 170–175.

    CAS  Google Scholar 

  • Elliot RM (1990) Molecular biology of the Bunyaviridae. The Journal of General Virology 71, 501–522.

    Google Scholar 

  • Elliott RM, Bouloy M, Calisher M, Goldbach CH, Moyer R, et al. (2000) Bunyaviruses. In ‘Virus taxonomy: classification and nomenclature of viruses: 7th report of the International Committee on Taxonomy of Viruses’. (Ed. MHV van Regenmortel) pp. 599–621. (Academic Press: San Diego)

    Google Scholar 

  • Finlay KW (1952) Inheritance of spotted wilt resistance in the tomato: I identification of strains of the virus by the resistance or susceptibility of tomato species. Australian Journal of Scientific Research 5, 303–314.

    CAS  PubMed  Google Scholar 

  • Finlay KW (1953) Inheritance of spotted wilt resistance in the tomato: II five genes controlling spotted wilt resistance in four tomato types. Australian Journal of Scientific Research 6, 153–163.

    CAS  Google Scholar 

  • Francki RIB, Fauquet CM, Knudson DL, Brown F (1991) Classification and nomenclature of viruses. Fifth report of the International Committee on Taxonomy of Viruses. Archives of Virology, Suppl. 2.

  • Francki RIB, Hatta T (1981) Tomato spotted wilt virus. In ‘Handbook of plant virus infections. Comparative diagnosis’. (Ed. E Kurstak) pp. 491–512. (Elsevier/North Holland Biomedical Press: New York)

    Google Scholar 

  • Fujisawa I, Tanaka K, Ishii M (1988) Tomato spotted wilt virus transmission by three species of thrips, Thrips setosus, Thrips tabaci, and Thrips palmi (In Japanese). Annals of the Phytopathological Society of Japan 54, 392 [Abstract].

    Google Scholar 

  • Gallo-Meagher M, Changalrayan K, Davis JM, McDonald GE (2001) Phorate-induced peanut genes that may condition acquired resistance to tomato spotted wilt. Proceedings of the American Peanut Research and Education Society 33, 29.

    Google Scholar 

  • Garland S, Sharman M, Persley DM, McGrath DJ (2005) The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Australian Journal of Agricultural Research 56, 285–289. doi: 10.1071/AR04140

    CAS  Google Scholar 

  • Gent DH, Schwartz HF, Khosla R (2004) Distribution and incidence of Iris yellow spot virus in Colorado and its relation to onion plant population and yield. Plant Disease 88, 446–452.

    Google Scholar 

  • German TL, Ullman DE, Moyer JW (1992) Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annual Review of Phytopathology 30, 315–348. doi: 10.1146/ annurev.py.30.090192.001531

    CAS  PubMed  Google Scholar 

  • Ghanekar AM, Reddy DVR, Iizuka N, Amin PW, Gibbons RW (1979) Bud necrosis of groundnut (Arachis hypogaea) in India caused by tomato spotted wilt virus. The Annals of Applied Biology 93, 173–179.

    Google Scholar 

  • Ghotbi T, Shahraeen N, Winter S (2005) Occurrence of Tospoviruses in Ornamental and Weed Species in Markazi and Tehran Provinces in Iran. Plant Disease 89, 425.

    Google Scholar 

  • Gibbs A, Mackenzie A, Blanchfield A, Cross P, Wilson C, et al. (2000) Viruses of orchids in Australia, their identification, biology and control. Australian Orchid Review 65, 10–21.

    Google Scholar 

  • Gonsalves D, Trujillo EE (1986) Tomato spotted wilt virus in papaya and detection of the virus by ELISA. Plant Disease 70, 501–506.

    Google Scholar 

  • Gracia O, De Borbon CM, Granval De Millan N, Cuesta GV (1999) Occurrence of different tospoviruses in vegetable crops in Argentina. Journal of Phytopathology 147, 223–227. doi: 10.1046/j.1439-0434.1999.147004223.x

    Google Scholar 

  • Greber RS, McCarthy GJP (1977) A disease of Duboisia caused by tomato spotted wilt virus (TSWV). Australasian Plant Pathology Society Newsletter 6, 54–55. doi: 10.1071/APP9770054

    Google Scholar 

  • Greer L, Dole JM (2003) Aluminium foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insect-vectored viral diseases of vegetables. Hort Technology 13, 276–284.

    Google Scholar 

  • Griep RA, Prins M, Van Twisk C, Keller HJHG, Kerschbaumer RJ, et al. (2000) Application of phage display in selecting Tomato spotted wilt virus specific single chain antibodies (scFvs) for sensitive diagnosis in ELISA. Phytopathology 90, 183–190.

    CAS  PubMed  Google Scholar 

  • Groves RL, Walgenbach JF, Moyer JW, Kennedy GG (2002) The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of tomato spotted wilt virus. Plant Disease 86, 573–582.

    Google Scholar 

  • Gubba A, Gonsalves C, Stevens MR, Tricoli DM, Gonsalves D (2002) Combining transgenic and natural resistance to obtain broad resistance to tospovirus infection in tomato (Lycopersicon esculentum Mill). Molecular Breeding 9, 13–23. doi: 10.1023/A:1019222614365

    CAS  Google Scholar 

  • Hassani-Mehraban A, Saaijer J, Peters D, Goldbach R, Kormelink R (2005) A new tomato-infecting tospovirus from Iran. Phytopathology 95, 852–858.

    CAS  PubMed  Google Scholar 

  • Heinze C, Roggero P, Sohn M, Vaira AM, Masenga V, Adam G (2000) Peptide-derived broad-reacting antisera against tospovirus NSs-protein. Journal of Virological Methods 89, 137–146. doi: 10.1016/S0166-0934(00)00214-7

    CAS  PubMed  Google Scholar 

  • Herrero S, Culbreath AK, Csinos AS, Pappu HR, Rufty RC, Daub ME (2000) Nucleocapsid gene-mediated transgenic resistance provides protection against tomato spotted wilt virus epidemics in the field. Phytopathology 90, 139–147.

    CAS  PubMed  Google Scholar 

  • Hill MF, Moran JR (1996) The incidence of tomato spotted wilt tospovirus (TSWV) in Australian nursery plants. Australasian Plant Pathology 25, 114–119. doi: 10.1071/AP96019

    Google Scholar 

  • Hoffmann K, Qiu WP, Moyer JW (2001) Overcoming host- and pathogen-mediated resistance in tomato and tobacco maps to the M RNA of Tomato spotted wilt virus. Molecular Plant-Microbe Interactions 14, 242–249.

    CAS  PubMed  Google Scholar 

  • Houston KJ, Mound LA, Palmer JM (1991) Two pest thrips (Thysanoptera) new to Australia, with notes on the distribution and structural variation of other species. Journal of the Australian Entomological Society 30, 231–232.

    Google Scholar 

  • Hsu HT, Lawson RH (1991) Direct tissue blotting for detection of tomato spotted wilt virus in Impatiens. Plant Disease 75, 292–295.

    CAS  Google Scholar 

  • Hsu H, Ueng PP, FangHua C, ZhaoHui Y, ShyiDon Y (2000) Serological and molecular characterization of a high temperature-recovered virus belonging to tospovirus serogroup IV. Journal of General Plant Pathology 66, 167–175.

    CAS  Google Scholar 

  • Hutton EM, Peak AR (1953) Spotted-wilt development in resistant and susceptible Lycopersicon species. Australian Journal of Agricultural Research 4, 160–167. doi: 10.1071/AR9530160

    Google Scholar 

  • Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, et al. (2000) Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Molecular Plant-Microbe Interactions 13, 673–682.

    CAS  PubMed  Google Scholar 

  • Jain RK, Pappu HR, Pappu SS, Krishna Reddy M, Vani A (1998) Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV. Archives of Virology 143, 1637–1644. doi: 10.1007/s007050050405

    CAS  PubMed  Google Scholar 

  • Jain RK, Umamaheswaran K, Bhat AI, Thien HX, Ahlawat YS (2002) Necrosis disease on cowpea, mung bean and tomato is caused by Groundnut bud necrosis virus. Indian Phytopathology 55, 354.

    Google Scholar 

  • Jan F-J, Chen T-C, Yeh S-D (2003) Occurrence, importance, taxonomy and control of thrips-borne tospoviruses. In ‘Advances in Plant Disease Management’. (Eds H-C Huanh, SN Acharya) pp. 391–411. (Research Signpost: Kerala, India)

    Google Scholar 

  • Jericho C, Wilson C (2003) TSWV in Australian potato crops—what is driving these epidemics? National strategy for the management of western flower thrips and Tomato spotted wilt virus Newsletter 30, 7–9.

    Google Scholar 

  • Jones RAC (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research 100, 5–30. doi: 10.1016/j.virusres.2003.12.011

    CAS  PubMed  Google Scholar 

  • Jones RAC, Sharman M (2005) Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia. Australasian Plant Pathology 34, 397–399.

    CAS  Google Scholar 

  • Kato K, Hanada K, Kameya-Iwaki M (2000) Melon yellow spot virus: A distinct species of the genus Tospovirus isolated from melon. Phytopathology 90, 422–426.

    CAS  PubMed  Google Scholar 

  • Kitajima EW, Resende RdO, Á vila ACd, Goldbach RW, Peters D (1992) Immuno-electron microscopical detection of tomato spotted wilt virus and its nucleocapsids in crude plant extracts. Journal of Virological Methods 38, 313–322. doi: 10.1016/0166-0934(92)90076-P

    CAS  PubMed  Google Scholar 

  • Kormelink R, Storms M, Lent Jv, Peters D, Goldbach R (1994) Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200, 56–65. doi: 10.1006/viro.1994.1162

    CAS  PubMed  Google Scholar 

  • Kormelink R, Peters D, Goldbach R (1998) ‘Tospovirus genus.’ AAB Description of Plant Viruses, Vol. 363. (Association of Applied Biologists: Warwick)

    Google Scholar 

  • Kritzman A, Beckelman H, Alexandrov S, Cohen J, Lampel M, et al. (2000) Lisianthus leaf necrosis: A new disease of Lisianthus caused by Iris yellow spot virus. Plant Disease 84, 1185–1189.

    CAS  Google Scholar 

  • Langella R, Ercolano MR, Monti LM, Frusciante L, Barone A (2004) Molecular marker assisted transfer of resistance to TSWV in tomato elite lines. The Journal of Horticultural Science & Biotechnology 79, 806–810.

    CAS  Google Scholar 

  • Lanier JE, Jordan DL, Spears JF, Wells R, Johnson PD, et al. (2004) Peanut response to planting pattern, row spacing, and irrigation. Agronomy Journal 96, 1066–1072.

    Google Scholar 

  • Latham L, Jones R (1996) Tomato spotted wilt virus and its management. Journal of Agriculture, Western Australia 37, 86–91.

    Google Scholar 

  • Latham LJ, Jones RAC (1997) Occurrence of tomato spotted wilt tospovirus in native flora, weeds, and horticultural crops. Australian Journal of Agricultural Research 48, 359–369. doi: 10.1071/A96084

    Google Scholar 

  • Latham LJ, Jones RAC (1998) Selection of resistance breaking strains of tomato spotted wilt tospovirus. The Annals of Applied Biology 133, 385–402.

    Google Scholar 

  • Law MD, Speck J, Moyer JW (1991) Nucleotide sequence of the 3 non-coding region and N gene of the S RNA of a serologically distinct tospovirus. The Journal of General Virology 72, 2597–2601.

    CAS  PubMed  Google Scholar 

  • Lawson RH, Dienelt MM, Hsu HT (1993) Effects of passaging a defective isolate of impatiens necrotic spot virus at different temperatures. Phytopathology 83, 662–670.

    Google Scholar 

  • Lawson RH, Dienelt MM, Hsu HT (1994) Influence of temperature on the ultrastructure and serological reactivity of two tospovirus isolates. Acta Horticulturae 377, 149–158.

    Google Scholar 

  • Lewis T (1997) Pest thrips in perspective. In ‘Thrips as crop pests’. (Ed. T Lewis) pp. 1–13. (CAB International: Wallingford)

    Google Scholar 

  • Lin Y-H, Chen T-C, Hsu H-T, Liu F-l, Chu F-H, et al. (2005) Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology 95, 1482–1488.

    CAS  PubMed  Google Scholar 

  • López Lambertini P, Williams L, Shohara K, Ducasse D (2003) Diagnosis of three Tospovirus species by rapid immunofilter paper assay. Journal of General Plant Pathology 69, 339–341. doi: 10.1007/s10327-003-0055-x

    Google Scholar 

  • Malipatil MB, Postle AC, Osmelak JA, Hill M, Moran J (1993) First record of Frankliniella occidentalis (Pergande) in Australia (Thysanoptera: Thripidae). Journal of the Australian Entomological Society 32, 378.

    Google Scholar 

  • Maris PC, Joosten NN, Peters D, Goldbach RW (2003) Thrips resistance in pepper and its consequences for the acquisition and inoculation of Tomato spotted wilt virus by the western flower thrips. Phytopathology 93, 96–101.

    CAS  PubMed  Google Scholar 

  • Martínez-Ochoa N, Csinos AS, Webster TM, Bertrand P (2003) Mixed infections of Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) in weeds around tobacco fields in Georgia. In ‘American Phytopathological Society Annual Meeting, 9–13 August 2003, Abstracts of Presentations’. Charlotte, North Carolina p. S58. (American Phytopathological Society: St Paul)

    Google Scholar 

  • Matthews REF (1982) Classification and nomenclature of viruses: fourth report of the international committee on taxonomy of viruses. Intervirology 17, 1–200.

    Google Scholar 

  • McMichael LA, Persley DM, Thomas JE (2000) The first record of a serotype IV tospovirus in Australia. Australasian Plant Pathology 29, 149. doi: 10.1071/AP00023

    Google Scholar 

  • McMichael LA, Persley DM, Thomas JE (2002) A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Australasian Plant Pathology 31, 231–239. doi: 10.1071/AP02016

    Google Scholar 

  • Milne RG, Francki RIB (1984) Should tomato spotted wilt virus be considered as a possible member of the family Bunyaviridae? Intervirology 22, 72–76.

    CAS  PubMed  Google Scholar 

  • Momol MT, Olson SM, Funderburk JE, Stavisky J, Marois JJ (2004) Integrated management of tomato spotted wilt on field-grown tomatoes. Plant Disease 88, 882–890.

    CAS  Google Scholar 

  • Moritz G, Kumm S, Mound L (2004) Tospovirus transmission depends on thrips ontogeny. Virus Research 100, 143–149. doi: 10.1016/j.virusres.2003.12.022

    CAS  PubMed  Google Scholar 

  • Mound LA (1996) The Thysanoptera vector species of tospoviruses. Acta Horticulturae 431, 298–306.

    Google Scholar 

  • Mound LA (1997) Biological diversity. In ‘Thrips as crop pests’. (Ed. T Lewis) pp. 197–215. (CAB International: Wallingford)

    Google Scholar 

  • Mound LA (2001) So many thrips—so few tospoviruses? In ‘Thrips and tospoviruses: Proceedings of the 7th International Symposium on Thysanoptera’. pp. 15–18. (Reggio: Calabria, Italy)

    Google Scholar 

  • Mound L (2002) Thrips news from Canberra. National Strategy for the Management of Western Flower Thrips and Tomato Spotted Wilt Virus Newsletter 25, 22.

    Google Scholar 

  • Mound LA (2004) Thrips (Thysanoptera) in Australia. Available at http://www.ento.csiro.au/thysanoptera/Ozthrips/Ozthrips.html (verified 3 February 2006)

  • Mound LA (2005) Thysanoptera: Diversity and Interactions. Annual Review of Entomology 50, 247–269. doi: 10.1146/annurev.ento. 49.061802.123318

    CAS  PubMed  Google Scholar 

  • Moury B, Palloix A, Selassie KG, Marchoux G (1997) Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94, 45–52. doi: 10.1023/A:1002997522379

    Google Scholar 

  • Moury B, Pflleger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of Tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43, 137–142. doi: 10.1139/gen-43-1-137

    CAS  PubMed  Google Scholar 

  • Moyer JW (1999) Tospoviruses (Bunyaviridae). In ‘Encyclopaedia of Virology’. (Eds A Granoff, R Webster) pp. 1803–1807. (Academic Press: San Diego)

    Google Scholar 

  • Moyer JW, Qiu W (1996) Molecular and genetic determinants of diversity in tomato spotted wilt virus. Acta Horticulturae 431, 219–227.

    CAS  Google Scholar 

  • Moyer JW, German T, Sherwood JL, Ullman D (1999) An Update on Tomato Spotted Wilt Virus and Related Tospoviruses. In ‘APSnet. Plant Pathology Online’. (American Phytopathological Society: St Paul) Available at http://www.apsnet.org (verified 3 February 2006)

    Google Scholar 

  • Mumford RA, Barker I, Wood KR (1994) The detection of tomato spotted wilt virus using the polymerase chain reaction. Journal of Virological Methods 46, 303–311. doi: 10.1016/0166-0934(94)90002-7

    CAS  PubMed  Google Scholar 

  • Mumford RA, Barker I, Wood KR (1996a) The biology of tospoviruses. The Annals of Applied Biology 128, 159–183.

    Google Scholar 

  • Mumford RA, Barker I, Wood KR (1996b) An improved method for the detection of Tospoviruses using the polymerase chain reaction. Journal of Virological Methods 57, 109–115. doi: 10.1016/0166-0934(95)01975-8

    CAS  PubMed  Google Scholar 

  • Murai T (2001) The pest and the vector from the East: Thrips palmi. In ‘Thrips and tospoviruses. Proceedings of the 7th International Symposium on Thysanoptera’. pp. 19–30. (Reggio: Calabria, Italy)

    Google Scholar 

  • Murai T, Kawai S, Chongratanameteekul W, Nakasuji F (2000) Damage to tomato by Ceratothripoides claratris (Shumsher) (Thysanoptera: Thripidae) in central Thailand and a note on its parasitoid, Goetheana shakespearei Girault (Hymenoptera: Eulophidae). Applied Entomology and Zoology 35, 505–507. doi: 10.1303/aez.2000.505

    Google Scholar 

  • Nagata T, Almeida ACL, Resende RO, de Avila AC (2004) The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology 53, 136–140. doi: 10.1111/j.0032-0862.2004.00984.x

    Google Scholar 

  • Nichol ST, Beaty BJ, Elliot RM, Goldbach R, Plyusnin A, et al. (2005) Bunyaviridae. In ‘Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses.’ (Eds CM Fauquet, MA Mayo, J Maniloff, U Desselberger, LA Ball) pp. 695–716. (Elsevier Academic Press: San Diego)

    Google Scholar 

  • Noble RJ (1928) Spotted wilt in tomatoes. Agricultural Gazette of New South Wales 39, 59–63.

    Google Scholar 

  • Norris DO (1946) The strain complex and symptom variability of tomato spotted wilt virus. Bulletin of the Council for Scientific and Industrial Research in Australia, Bulletin No. 202, pp. 1–51.

  • Norris DO (1951) Spotted wilt of potato. I. The field disease and studies of the causal virus. Australian Journal of Agricultural Research 2, 221–242. doi: 10.1071/AR9510221

    Google Scholar 

  • Okuda M, Hanada K (2001) RT-PCR for detecting five distinct Tospovirus species using degenerate primers and dsRNA template. Journal of Virological Methods 96, 149–156. doi: 10.1016/S0166-0934(01)00321-4

    CAS  PubMed  Google Scholar 

  • Perry KL, Miller L, Williams L (2005) Impatiens necrotic spot virus in greenhouse-grown potatoes in New York State. Plant Disease 89, 340.

    Google Scholar 

  • Persley DM (2003) Capsicum chlorosis virus. In ‘Compendium of Pepper Diseases’. (Eds K Pernezny, PD Roberts, JF Murphy, NP Goldberg). (American Phytopathological Society: St Paul)

    Google Scholar 

  • Persley D, Sharman M, Thomas J, Baelde A (2002) Tomato spotted wilt virus infects resistant capsicum cultivars. National Management Strategy for the Management of Western Flower Thrips and Tomato Spotted Wilt Virus Newsletter 26, 34.

    Google Scholar 

  • Peters D (2003) Tospoviruses. In ‘Virus and Virus-Like Diseases of Major Crops in Developing Countries’. pp. 719–742. (Kluwer Academic Publishers: Dordrecht)

    Google Scholar 

  • Pethybridge SJ, Wilson CR (2004) A survey for viruses and a viroid in Tasmanian pyrethrum crops. Australasian Plant Pathology 33, 301–303. doi: 10.1071/AP04013

    Google Scholar 

  • Pittman HA (1927) Spotted wilt of tomatoes. Journal of the Council for Scientific and Industrial Research 1, 74–77.

    Google Scholar 

  • Pongsapich P, Chiemsombat P (2002) Characterisation of tospovirus infecting tomatoes in Thailand revealed the presence of serogroup-IV tospovirus but not serogroup I—tomato spotted wilt virus. In ‘The First International Conference on Tropical and Subtropical Plant Diseases’. pp. 92. (The Imperial Mae Ping Hotel, Chiang Mai, Thailand) (Department of Agriculture: Thailand)

    Google Scholar 

  • Pozzer L, Bezerra IC, Kormelink R, Prins M, Peters D, et al. (1999) Characterisation of a Tospovirus Isolate of Iris Yellow Spot Virus Associated with a Disease in Onion Fields in Brazil. Plant Disease 83, 345–350.

    CAS  Google Scholar 

  • Premachandra WTSD, Borgemeister C, Maiss E, Knierim D, Poehling HM (2005) Ceratothripoides claratris, a new vector of a Capsicum chlorosis virus isolate infecting tomatoes in Thailand. Phytopathology 95, 659–663.

    CAS  PubMed  Google Scholar 

  • Prins M, Lohuis D, Schots A, Goldbach R (2005) Phage displayselected single-chain antibodies confer high levels of resistance against Tomato spotted wilt virus. The Journal of General Virology 86, 2107–2113. doi: 10.1099/vir.0.80958-0

    CAS  PubMed  Google Scholar 

  • Qiu WP, Geske SM, Hickey CM, Moyer JW (1998) Tomato spotted wilt tospovirus genome reassortment and genome segment-specific adaptation. Virology (New York) 244, 186–194.

    CAS  Google Scholar 

  • Qui W, Moyer JW (1999) Tomato spotted wilt tospovirus adapts to the TSWV N gene-derived resistance by genome reassortment. Phytopathology 89, 575–582.

    Google Scholar 

  • Reddy DVR, Amin PW, McDonald D, Ghanekar AM (1983) Epidemiology and control of groundnut bud necrosis and other disease of legume crops in India caused by Tomato spotted wilt virus. In ‘Plant virus epidemiology’. (Eds RT Plumb, JM Thresh) pp. 93–102. (Blackwell Science Publication: Oxford)

    Google Scholar 

  • Reddy DVR, Ratna AS, Sudarshana MR, Poul F, Kumar IK (1992) Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. The Annals of Applied Biology 120, 279–286.

    Google Scholar 

  • Roberts CA, Dietzgen RG, Heelan LA, Maclean DJ (2000) Realtime RT-PCR fluorescent detection of tomato spotted wilt virus. Journal of Virological Methods 88, 1–8. doi: 10.1016/S0166-0934(00)00156-7

    CAS  PubMed  Google Scholar 

  • Roggero P, Masenga V, Tavella L (2002) Field Isolates of Tomato Spotted Wilt Virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Disease 86, 950–954.

    Google Scholar 

  • Roselló S, Díez MJ, Nuez F (1996) Viral diseases causing the greatest economic losses to the tomato crop. I. The tomato spotted wilt virus — a review. Scientia Horticulturae 67, 117–150. doi: 10.1016/ S0304-4238(96)00946-6

    Google Scholar 

  • Sakimura K (1963) Frankliniella fusca, an additional vector for the tomato spotted wilt virus, with notes on Thrips tabaci, another vector. Phytopathology 53, 412–415.

    Google Scholar 

  • Samuel G, Bald JG, Pittman HA (1930) Investigations on ‘spotted wilt’ of tomatoes in Australia. Australian Council of Scientific and Industrial Research Bulletin 44, 8–11.

    Google Scholar 

  • Satyanarayana T, Reddy KL, Ratna AS, Deom CM, Gowda S, Reddy DVR (1996) Peanut yellow spot virus: A distinct tospovirus species based on serology and nucleic acid hybridisation. The Annals of Applied Biology 129, 237–245.

    Google Scholar 

  • Sharman M, Persley DM (2005) Field isolates of Tomato spotted wilt virus overcoming resistance in tomato in Australia. Australasian Plant Pathology 34, (In press).

  • Sherwood JL, Sanborn MR, Keyser GC, Myers LD (1989) Use of monoclonal antibodies in detection of tomato spotted wilt virus. Phytopathology 79, 61–64.

    Google Scholar 

  • Sherwood JL, Bandla MD, Chenault KD, Ullman DE, Westcot DM, German TL (1995) Utility of antibodies to explore and control tomato spotted wilt virus. In ‘Recent studies on peanut bud necrosis disease: proceedings of a meeting’. (Eds AAM Bueill, JE Parlevliet, JM Lenne) pp. 25–33. (ICRSAT: Patancheru)

    Google Scholar 

  • Sherwood JL, German TL, Whitfield AE, Moyer JW, Ullman DE (2000) Tomato spotted wilt. In ‘Encyclopedia of Plant Pathology’. (Eds OC Maloy, TD Murray) pp. 1034–1040. (JohnWiley and Sons: New York)

    Google Scholar 

  • Sin S-H, McNulty BC, Kennedy GG, Moyer JW (2005) Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America 102, 5168–5173. doi: 10.1073/ pnas.0407354102

    CAS  PubMed  Google Scholar 

  • Smith KM (1931) Studies on potato virus diseases VIII. On a ringspot virus affecting solanaceous plants. The Annals of Applied Biology 18, 1–15.

    Google Scholar 

  • Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement of protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proceedings of the National Academy of Sciences of the United States of America 97, 2373–2378. doi: 10.1073/ pnas.030548397

    CAS  PubMed  Google Scholar 

  • Soler S, Díez MJ, Roselló S, Nuez F (1999) Movement and distribution of tomato spotted wilt virus in resistant and susceptible accessions of Capsicum spp. Canadian Journal of Plant Pathology 21, 317–325.

    Google Scholar 

  • Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, et al. (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Molecular Breeding 7, 151–161. doi: 10.1023/A:1011363119763

    CAS  Google Scholar 

  • Steiner MY, Goodwin S, Wellham TM, Barchia IM, Spohr LJ (2003) Biological studies of the Australian predatory mite Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae), a potential biocontrol agent forwestern flower thrips,Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Australian Journal of Entomology 42, 124–130. doi: 10.1046/j.1440-6055.2003.00343.x

    Google Scholar 

  • Stevens MR, Scott SJ, Gergerich RC (1992) Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59, 9–17.

    Google Scholar 

  • Stevens MR, Scott SJ, Gergerich RC (1994) Evaluation of seven Lycopersicon species for resistance to tomato spotted wilt virus (TSWV). Euphytica 80, 79–84. doi: 10.1007/BF00039301

    Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theoretical and Applied Genetics 90, 451–456. doi: 10.1007/BF00221989

    CAS  Google Scholar 

  • Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, et al. (2002) Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Letters 532, 75–79. doi: 10.1016/S0014-5793(02)03632-3

    CAS  PubMed  Google Scholar 

  • Terry LI (1997) Host selection, communication and reproductive behaviour. In ‘Thrips as crop pests’. (Ed. T Lewis) pp. 65–118. (CAB International: Wallingford)

    Google Scholar 

  • Tesoriero L, Lidbetter J (2001) New host records for Tomato spotted wilt virus: kangaroo paws (Anigozanthos hybrids) and everlasting daisies (Bracteantha bracteata). In ‘Proceedings of the 13th Biennial Plant Pathology Conference, 24–27 September 2001, Cairns’. p. 219. (Australasian Plant Pathology Society)

  • Thomas JE, Schwinghamer MW, Parry JN, Sharman M, Schilg MA, Dann EK (2004) First report of tomato spotted wilt virus in chickpea (Cicer arietinum) in Australia. Australasian Plant Pathology 33, 597–599. doi: 10.1071/AP04065

    Google Scholar 

  • Thomas-Carroll ML, Jones RAC (2003) Selection, biological properties and fitness of resistance-breaking strains of Tomato spotted wilt virus in pepper. The Annals of Applied Biology 142, 235–243.

    Google Scholar 

  • Tsompana M, Abad J, Purugganan M, Moyer JW (2005) The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Molecular Ecology 14, 53–66. doi: 10.1111/j.1365-294X.2004.02392.x

    CAS  PubMed  Google Scholar 

  • Uga H, Tsuda S (2005) A one-step reverse transcription-polymerase chain reaction system for the simultaneous detection and identification of multiple tospovirus infections. Phytopathology 95, 166–171.

    CAS  PubMed  Google Scholar 

  • Ullman DE, Westcot DM, Chenault KD, Sherwood JL, German TL, et al. (1995) Compartmentalization, Intracellular-Transport, and Autophagy of Tomato Spotted Wilt Tospovirus Proteins in Infected Thrips Cells. Phytopathology 85, 644–654.

    Google Scholar 

  • Ullman DE, Sherwood JL, German TL (1997) Thrips as vectors of plant pathogens. In ‘Thrips as crop pests’. (Ed. T Lewis) pp. 539–565. (CAB International: Wallingford)

    Google Scholar 

  • Ullman DE, Meideros R, Campbell LR, Whitfield AE, Sherwood JL, German TL (2002) Thrips as vectors of tospoviruses. In ‘Advances in Botanical Research’. (Ed. R Plumb) pp. 113–140. (Academic Press: San Diego)

    Google Scholar 

  • Weekes R, Barker I, Wood KR (1996) An RT-PCR test for the detection of tomato spotted wilt tospovirus incorporating immunocapture and colorimetric estimation. Phytopathology 144, 575–580.

    CAS  Google Scholar 

  • Whitfield AE, Ullman DE, German TL (2005a) Tomato spotted wilt virus glycoprotein Gc is cleaved at acidic pH. Virus Research 110, 183–186. doi: 10.1016/j.virusres.2005.01.007

    CAS  PubMed  Google Scholar 

  • Whitfield AE, Ullman DE, German TL (2005b) Tospovirus-thrips interactions. Annual Review of Phytopathology 43, 459–489. doi: 10.1146/annurev.phyto.43.040204.140017

    CAS  PubMed  Google Scholar 

  • Wilson CR (1998) Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms. Plant Pathology 47, 171–176. doi: 10.1046/j.1365-3059.1998.00227.x

    Google Scholar 

  • Wilson CR (2001) Resistance to infection and translocation of Tomato spotted wilt virus in potatoes. Plant Pathology 50, 402–410. doi: 10.1046/j.1365-3059.2001.00562.x

    Google Scholar 

  • Wilson CR, Wilson AJ, Pethybridge SJ (2000) First report of Tomato spotted wilt virus in common agapanthus. Plant Disease 84, 491.

    Google Scholar 

  • Wongkaew S (2002) Tospovirus: a new emerging important plant virus group in Asia. In ‘The First International Conference on Tropical and Subtropical Plant Diseases’. pp. 49. (The Imperial Mae Ping Hotel, Chiang Mai, Thailand) (Department of Agriculture: Thailand)

    Google Scholar 

  • Yeh SD, Chang TF (1995) Nucleotide-Sequence of the N-Gene of Watermelon Silver Mottle Virus, a Proposed New Member of the Genus Tospovirus. Phytopathology 85, 58–64.

    CAS  Google Scholar 

  • Yeh SD, Chen TC, Peng JC, Liu FL, Wu YL (2005) Broad spectrum resistance to distinct Tospoviruses in transgenic tobacco carrying the conserved region of the L Protein of Watermelon silver mottle virus. In ‘Proceedings of the 8th International Symposium on Thysanoptera and tospoviruses’. pp. 62. (Asilomar Conference Grounds, California)

    Google Scholar 

  • Zhao GY, Liu W, Brown JM, Knowles CO (1995) Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 88, 1164–1170.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persley, D.M., Thomas, J.E. & Sharman, M. Tospoviruses—an Australian perspective. Australasian Plant Pathology 35, 161–180 (2006). https://doi.org/10.1071/AP06015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP06015

Keywords

Navigation