Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression

  1. Fabio Savarese1,
  2. Amparo Dávila1,
  3. Robert Nechanitzky1,
  4. Inti De La Rosa-Velazquez2,
  5. Carlos F. Pereira3,
  6. Rudolf Engelke1,
  7. Keiko Takahashi4,
  8. Thomas Jenuwein2,
  9. Terumi Kohwi-Shigematsu4,
  10. Amanda G. Fisher3 and
  11. Rudolf Grosschedl1,5
  1. 1Max Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, 79108 Freiburg, Germany;
  2. 2Max Planck Institute of Immunobiology, Department of Epigenetics, 79108 Freiburg, Germany;
  3. 3MRC Clinical Sciences Centre, Imperial College London, London W12 ONN, United Kingdom;
  4. 4Life Sciences Division, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California 94720, USA

    Abstract

    Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1−/− cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1−/− cultures have a higher proportion of Nanoghigh cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1−/−Satb2−/− ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.

    Keywords:

    Keywords

    Footnotes

    | Table of Contents
    OPEN ACCESS ARTICLE

    Life Science Alliance