Skip to main content
Log in

Problems of Coronary Flow Reserve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Coronary flow reserve is used to aid understanding why myocardial oxygen consumption may fail to meet demand. Its general aspects are well known, but the problems of using it are not. This manuscript describes three important factors that need to be considered when assessing coronary flow reserve. (1) Maximal flow is usually achieved by giving either increasing doses or else what is thought to be a maximal dose of a vasodilator, or by examining peak reactive hyperemia. Evidence that both these approaches are flawed is provided. (2) Existing methods in humans allow only total reserve to be determined, but this might be inadequate because changes in total reserve might not reflect changes in subendocardial flow reserve. (3) Because there is marked heterogeneity of flow reserve in the left ventricle, measuring total flow reserve does not indicate when small regions are becoming ischemic. More basic research is needed to overcome these difficulties. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasaka, T., K. Yoshida, T. Hozumi, T. Takagi, S. Kaji, T. Kawamoto, Y. Ueda, Y. Okada, S. Morioka, and J. Yoshikawa. Restricted coronary flow reserve in patients with mitral regurgitation improves after mitral reconstructive surgery. J. Am. Coll. Cardiol. 32:1923–1930, 1998.

    Google Scholar 

  2. Armour, J. A., and W. C. Randall. Canine left ventricular intramyocardial pressures. Am. J. Physiol. 220:1833–1839, 1971.

    Google Scholar 

  3. Arts, T., and R. S. Reneman. Interaction between intramyocardial pressure (IMP) and myocardial circulation. J. Biomech. Eng. 107:51–56, 1985.

    Google Scholar 

  4. Arts, T., P. C. Veenstra, and R. S. Reneman. A model of the mechanics of the left ventricle. Ann. Biomed. Eng. 7:299–318, 1979.

    Google Scholar 

  5. Ashikawa, K., H. Kanatsuka, T. Suzuki, and T. Takishima. Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ. Res. 59:704–7011, 1986.

    Google Scholar 

  6. Austin, Jr., R. E., G. S. Aldea, D. L. Coggins, A. E. Flynn, and J. I. E. Hoffman. Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ. Res. 67:319–331, 1990.

    Google Scholar 

  7. Austin, Jr., R. E., N. G. Smedira, T. M. Squiers, and J. I. E. Hoffman. Influence of cardiac contraction and coronary vasomotor tone on regional myocardial blood flow. Am. J. Physiol. 266:H2542–H2553, 1994.

    Google Scholar 

  8. Bach, R. G., T. J. Donohue, and M. J. Kern. Intracoronary Doppler flow velocity measurements for the evaluation and treatment of coronary artery disease. Curr. Opin. Cardiol. 10:434–442, 1995.

    Google Scholar 

  9. Bach, R. G., and M. J. Kern. Practical coronary physiology. Clinical application of the Doppler flow velocity guide wire. Cardiol. Clinics 15:77–99, 1997.

    Google Scholar 

  10. Baird, R. J., R. T. Manktelow, P. A. Shah, and F. M. Ameli. Intramyocardial pressure: A study of its regional variations and its relationship to intraventricular pressure. J. Thorac. Cardiovasc. Surg. 59:810–823, 1970.

    Google Scholar 

  11. Bengel, F. M., M. Hauser, C. S. Duvernoy, A. Kuehn, S. I. Ziegler, J. C. Stollfuss, M. Beckmann, U. Sauer, O. Muzik, M. Schwaiger, and J. Hess. Myocardial blood flow and coronary flow reserve late after anatomical correction of transposition of the great arteries. J. Am. Coll. Cardiol. 32:1955–1961, 1998.

    Google Scholar 

  12. Bookstein, J. J., and C. B. Higgins. Comparative efficacy of coronary vasodilatory methods. Invest. Radiol. 12:121–127, 1977.

    Google Scholar 

  13. Caiati, C., N. Zedda, C. Montaldo, R. Montisci, and S. Iliceto. Contrast-enhanced transthoracic second-harmonic echo Doppler with adenosine: A noninvasive, rapid, and effective method for coronary flow reserve assessment. J. Am. Coll. Cardiol. 34:122–130, 1999.

    Google Scholar 

  14. Campisi, R., J. Czernin, H. L. Karpman, and H. R. Schelbert. Coronary vasodilatory capacity and flow reserve in normal myocardium supplied by bypass grafts late after surgery. Am. J. Cardiol. 80:27–31, 1997.

    Google Scholar 

  15. Canty, Jr., J. M. Coronary pressure–function and steadystate pressure–flow relations during autoregulation in the unanesthetized dog. Circ. Res. 63:821–836, 1988.

    Google Scholar 

  16. Canty, Jr., J. M., and F. J. Klocke. Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71:370–377, 1985.

    Google Scholar 

  17. Chadwick, R. S., A. Tedgui, J. B. Michel, J. Ohayon, and B. Levy. A theoretical model for myocardial blood flow. In: Cardiovascular Dynamics and Models, edited by P. Brun, R. S. Chadwick and B. I. Levy. Paris: Les Editions INSERM, 1988, p. 77–90.

    Google Scholar 

  18. Chilian, W. M. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ. Res. 69:561–570, 1991.

    Google Scholar 

  19. Chilian, W. M. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 95:522–528, 1997.

    Google Scholar 

  20. Chilian, W. M., L. Kuo, D. V. DeFily, C. J. Jones, and M. J. Davis. Endothelial regulation of coronary microvascular tone under physiological and pathophysiological conditions. Eur. Heart J. 14:55–59, 1993.

    Google Scholar 

  21. Cleary, R. M., D. Ayon, N. B. Moore, S. F. DeBoe, and G. B. Mancini. Tachycardia, contractility, and volume loading alter conventional indexes of coronary flow reserve, but not the instantaneous hyperemic flow versus pressure slope index. J. Am. Coll. Cardiol. 20:1261–1269, 1992.

    Google Scholar 

  22. Cleary, R. M., N. B. Moore, S. F. DeBoe, and G. B. Mancini. Sensitivity and reproducibility of the instantaneous hyperemic flow versus pressure slope index compared to coronary flow reserve for the assessment of stenosis severity. Am. Heart J. 126:57–65, 1993.

    Google Scholar 

  23. Coggins, D. L., A. E. Flynn, R. E. Austin, Jr., G. S. Aldea, D. Muehrcke, M. Goto, and J. I. E. Hoffman. Nonuniform loss of regional flow reserve during myocardial ischemia in dogs. Circ. Res. 67:253–264, 1990.

    Google Scholar 

  24. Coletta, C., A. Galati, R. Ricci, A. Sestili, N. Aspromonte, G. Richichi, and V. Ceci. Coronary flow reserve of normal left anterior descending artery in patients with ischemic heart disease: A transesophageal Doppler study. J. Am. Soc. Echocardiogr. 12:720–728, 1999.

    Google Scholar 

  25. Cusma, J. T., E. J. Toggart, J. D. Folts, W. W. Peppler, N. J. Hangiandreou, C. S. Lee, and C. A. Mistretta. Digital subtraction angiographic imaging of coronary flow reserve. Circulation 75:461–472, 1987.

    Google Scholar 

  26. De Bruyne, B., J. Bartunek, S. U. Sys, N. H. Pijls, G. R. Heyndrickx, and W. Wijns. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve (see Comments). Circulation 94:1842–1849, 1996.

    Google Scholar 

  27. De Bruyne, B., T. Baudhuin, J. A. Melin, N. H. Pijls, S. U. Sys, A. Bol, W. J. Paulus, G. R. Heyndrickx, and W. Wijns. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 89:1013–1022, 1994.

    Google Scholar 

  28. De Bruyne, B., P. A. Dorsaz, P. A. Doriot, B. Meier, L. Finci, and W. Rutishauser. Assessment of regional coronary flow reserve by digital angiography in patients with coronary artery disease. Int. J. Cardiac Imaging 3:47–55, 1988.

    Google Scholar 

  29. De Bruyne, B., W. J. Paulus, and N. H. Pijls. Rationale and application of coronary trans-stenotic pressure gradient measurements (see Comments). Cathet. Cardiovasc. Diag. 33:250–261, 1994.

    Google Scholar 

  30. DeFily, D. V., and W. M. Chilian. Coronary microcirculation: Autoregulation and metabolic control. Basic Res. Cardiol. 90:112–118, 1995.

    Google Scholar 

  31. Demer, L., K. L. Gould, and R. Kirkeeide. Assessing stenosis severity: Coronary flow reserve, collateral function, quantitative coronary arteriography, positron imaging, and digital subtraction angiography. A review and analysis. Prog. Cardiovasc. Dis. 30:307–322, 1988.

    Google Scholar 

  32. Di Mario, C., R. Krams, R. Gil, and P. W. Serruys. Slope of the instantaneous hyperemic diastolic coronary flow velocity–pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 90:1215–1224, 1994.

    Google Scholar 

  33. Dieudonne´, J. M. Tissue–cavitary difference pressure of dog left ventricle. Am. J. Physiol. 213:101–106, 1967.

    Google Scholar 

  34. Dieudonne´, J. M. Tissue–cavitary difference pressure of dog myocardium under stress. Am. J. Physiol. 213:107–111, 1967.

    Google Scholar 

  35. Domenech, R. J., and J. Goich. Effect of heart rate on regional coronary blood flow. Cardiovasc. Res. 10:224–231, 1976.

    Google Scholar 

  36. Donnelly, J. P., D. M. Raffel, B. L. Shulkin, J. R. Corbett, E. L. Bove, R. S. Mosca, and T. J. Kulik. Resting coronary flow and coronary flow reserve in human infants after repair or palliation of congenital heart defects as measured by positron emission tomography (see Comments). J. Thorac. Cardiovasc. Surg. 115:103–110, 1998.

    Google Scholar 

  37. Doty, D. B., C. L. Eastham, L. F. Hiratzka, C. B. Wright, and M. L. Marcus. Determination of coronary reserve in patients with supravalvular aortic stenosis. Circulation 66:I186–I192, 1982.

    Google Scholar 

  38. Doty, D. B., C. B. Wright, L. F. Hiratzka, C. L. Eastham, and M. L. Marcus. Coronary reserve in volume-induced right ventricular hypertrophy from atrial septal defect. Am. J. Cardiol. 54:1059–1063, 1984.

    Google Scholar 

  39. Doucette, J. W., P. D. Corl, H. M. Payne, A. E. Flynn, M. Goto, M. Nassi, and J. Segal. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85:1899–1911, 1992.

    Google Scholar 

  40. Downey, H. F., G. J. Crystal, and F. A. Bashour. Asynchro-nous transmural perfusion during coronary reactive hyperemia. Cardiovasc. Res. 17:200–206, 1983.

    Google Scholar 

  41. Drake-Holland, A. J., J. D. Laird, M. I. M. Noble, J. A. E. Spaan, and I. Vergroesen. Oxygen and coronary vascular resistance during autoregulation and metabolic vasodilatation in the dog. J. Physiol. (London) 348:285–299, 1984.

    Google Scholar 

  42. Feigl, E. O. Coronary physiology. Physiol. Rev. 63:1–205, 1983.

    Google Scholar 

  43. Ferrari, M., B. Schnell, G. S. Werner, and H. R. Figulla. Safety of deferring angioplasty in patients with normal coronary flow velocity reserve. J. Am. Coll. Cardiol. 33:82–87, 1999.

    Google Scholar 

  44. Flynn, A. E., D. L. Coggins, M. Goto, G. S. Aldea, R. E. Austin, J. W. Doucette, W. Husseini, and J. I. E. Hoffman. Does systolic subepicardial perfusion come from retrograde subendocardial flow? Am. J. Physiol. 262:H1759–H1769, 1992.

    Google Scholar 

  45. Ganz, W., K. Tamura, H. S. Marcus, R. Donoso, S. Yoshida, and H. J. Swan. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44:181–195, 1971.

    Google Scholar 

  46. Goto, M., A. E. Flynn, J. W. Doucette, C. M. Jansen, M. M. Stork, D. L. Coggins, D. D. Muehrcke, W. K. Husseini, and J. I. Hoffman. Cardiac contraction affects deep myocardial vessels predominantly. Am. J. Physiol. 261:H1417–H1429, 1991.

    Google Scholar 

  47. Gould, K. L., R. A. Goldstein, N. A. Mullani, R. L. Kirkeeide, W. H. Wong, T. J. Tewson, M. S. Berridge, L. A. Bolomey, R. K. Hartz, R. W. Smalling et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J. Am. Coll. Cardiol. 7:775–789, 1986.

    Google Scholar 

  48. Gould, K. L., R. L. Kirkeeide, and M. Buchi. Coronary flow reserve as a physiologic measure of stenosis severity. J. Am. Coll. Cardiol. 15:459–474, 1990.

    Google Scholar 

  49. Gould, K. L., and K. Lipscomb. Effects of coronary stenosis on coronary flow reserve and resistance. Am. J. Cardiol. 34:48–55, 1974.

    Google Scholar 

  50. Gould, K. L., K. Lipscomb, and G. W. Hamilton. Physiologic basis for assessing critical coronary stenosis. Am. J. Cardiol. 33:87–94, 1974.

    Google Scholar 

  51. Gould, K. L., D. Ornish, L. Scherwitz, S. Brown, R. P. Edens, M. J. Hess, N. Mullani, L. Bolomey, F. Dobbs, W. T. Armstrong et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification (see Comments). J. Am. Med. Assoc. 274:894–901, 1995.

    Google Scholar 

  52. Hamlin, R. L., M. J. Levesque, and M. D. Kittelson. Intramyocardial pressure and distribution of coronary blood flow during systole and diastole in the horse. Cardiovasc. Res. 16:256–262, 1982.

    Google Scholar 

  53. Hanley, F. L., L. M. Messina, M. T. Grattan, and J. I. E. Hoffman. The effect of coronary inflow pressure on coronary vascular resistance in the isolated dog heart. Circ. Res. 54:760–772, 1984.

    Google Scholar 

  54. Heineman, F. W., and J. Grayson. Transmural distribution of intramyocardial pressure measured by micropipette technique. Am. J. Physiol. 249:H1216–H1223, 1985.

    Google Scholar 

  55. Hess, O. M., M. J. McGillem, S. F. DeBoe, I. M. Pinto, K. P. Gallagher, and G. B. Mancini. Determination of coronary flow reserve by parametric imaging (see Comments). Circulation 82:1438–1448, 1990.

    Google Scholar 

  56. Hildick-Smith, D. J., and L. M. Shapiro. Potential use of transthoracic echocardiography in the assessment of coronary flow reserve. J. Am. Soc. Echocardiogr. 12:590–595, 1999

    Google Scholar 

  57. Hoffman, J. I. E. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70:153–159, 1984.

    Google Scholar 

  58. Hoffman, J. I. E., R. W. Baer, F. L. Hanley, L. M. Messina, and M. T. Grattan. Regulation of transmural myocardial blood flow. J. Biomech. Eng. 107:2–9, 1985.

    Google Scholar 

  59. Hoffman, J. I. E. A critical view of coronary reserve. Circulation 75:6–11, 1987.

    Google Scholar 

  60. Hoffman, J. I. E., and J. A. E. Spaan. Pressure–flow relations in coronary circulation. Physiol. Rev. 70:331–390, 1990.

    Google Scholar 

  61. Hozumi, T., K. Yoshida, T. Akasaka, Y. Asami, Y. Ogata, T. Takagi, S. Kaji, T. Kawamoto, Y. Ueda, and S. Morioka. Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: Comparison with invasive technique. J. Am. Coll. Cardiol. 32:1251–1259, 1998.

    Google Scholar 

  62. Ince, C., J. F. Ashruf, J. A. Avontuur, P. A. Wieringa, J. A. Spaan, and H. A. Bruining. Heterogeneity of the hypoxic state in the rat heart is determined at the capillary level. Am. J. Physiol. 264:H294–H301, 1993.

    Google Scholar 

  63. Inoue, F., T. Hashimoto, S. Fujimoto, S. Uemura, A. Kawamoto, and K. Dohi. Estimation of coronary flow reserve by intracoronary administration of nicorandil: Comparison with intracoronary administration of papaverine. Heart Vessels 13:229–236, 1998.

    Google Scholar 

  64. Iwanaga, S., S. G. Ewing, W. K. Husseini, and J. I. Hoffman. Changes in contractility and afterload have only slight effects on subendocardial systolic flow impediment. Am. J. Physiol. 269:H1202–H1212, 1995.

    Google Scholar 

  65. Jones, C. J., L. Kuo, M. J. Davis, and W. M. Chilian. Distribution and control of coronary microvascular resistance. Adv. Exp. Med. Biol. 346:181–188, 1993.

    Google Scholar 

  66. Jones, C. J., L. Kuo, M. J. Davis, and W. M. Chilian. Myogenic and flow-dependent control mechanisms in the coronary microcirculation (editorial). Basic Res. Cardiol. 88:2–10, 1993.

    Google Scholar 

  67. Jones, C. J., L. Kuo, M. J. Davis, and W. M. Chilian. Regulation of coronary blood flow: Coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc. Res. 29:585–596, 1995.

    Google Scholar 

  68. Kajiya, F., G. Tomonaga, K. Tsujioka, Y. Ogasawara, and H. Nishihara. Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method. J. Biomech. Eng. 107:10–15, 1985.

    Google Scholar 

  69. Kawada, N., H. Sakuma, T. Yamakado, K. Takeda, N. Isaka, T. Nakano, and C. B. Higgins. Hypertrophic cardiomyopathy: MR measurement of coronary blood flow and vasodilator flow reserve in patients and healthy subjects. Radiology 211:129–135, 1999.

    Google Scholar 

  70. Kern, M. J., M. Courtois, and P. Ludbrook. A simplified method to measure coronary blood flow velocity in patients: Validation and application of a Judkins-style Doppler-tipped angiographic catheter. Am. Heart J. 120:1202–1212, 1990.

    Google Scholar 

  71. Kern, M. J., T. J. Donohue, F. V. Aguirre, R. G. Bach, E. A. Caracciolo, E. Ofili, and A. J. Labovitz. Assessment of angiographically intermediate coronary artery stenosis using the Doppler flowire. Am. J. Cardiol. 71:26D–33D, 1993.

    Google Scholar 

  72. Kern, M. J., T. J. Donohue, R. G. Bach, E. A. Caracciolo, M. S. Flynn, and F. V. Aguirre. Clinical applications of the Doppler coronary flow velocity guidewire for interventional Procedures. J. Interv. Cardiol. 6:345–363, 1993.

    Google Scholar 

  73. Kern, M. J., S. Puri, W. R. Craig, R. G. Bach, and T. J. Donohue. Hemodynamic rounds series II: Coronary hemo-dynamics for angioplasty and stenting after myocardial infarction: Use of absolute, relative coronary velocity and fractional flow reserve. Cathet. Cardiovasc. Diag. 45:174–182, 1998.

    Google Scholar 

  74. Kuo, L., M. J. Davis, and W. M. Chilian. Longitudinal gradients for endothelium-dependent and-independent vascular responses in the coronary microcirculation. Circulation 92:518–525, 1995.

    Google Scholar 

  75. Kuo, L., M. J. Davis, and W. M. Chilian. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am. J. Physiol. 255:H1558–H1562, 1988.

    Google Scholar 

  76. Kyriakides, Z. S., A. Antoniadis, T. M. Kolettis, and D. T. Kremastinos. Coronary flow reserve in the contralateral artery increases after successful coronary angioplasty in patients with spontaneously visible collateral vessels. Heart 80:493–498, 1998.

    Google Scholar 

  77. Lambertz, H., H. P. Tries, T. Stein, and H. Lethen. Noninvasive assessment of coronary flow reserve with transthoracic signal-enhanced Doppler echocardiography. J. Am. Soc. Echocardiogr. 12:186–195, 1999.

    Google Scholar 

  78. Lund, G. K., H. Sakuma, and C. B. Higgins. Coronary flow reserve: Assessment by magnetic resonance imaging. Rays 24:119–130, 1999.

    Google Scholar 

  79. Mancini, G. B., R. M. Cleary, S. F. DeBoe, N. B. Moore, and K. P. Gallagher. Instantaneous hyperemic flow-versuspressure slope index. Microsphere validation of an alternative to measures of coronary reserve. Circulation 84:862–870, 1991.

    Google Scholar 

  80. Mancini, G. B., M. J. McGillem, S. F. DeBoe, and K. P. Gallagher. The diastolic hyperemic flow versus pressure relation. A new index of coronary stenosis severity and flow reserve. Circulation 80:941–950, 1989.

    Google Scholar 

  81. Manginas, A., P. Gatzov, C. Chasikidis, V. Voudris, G. Pavlides, and D. V. Cokkinos. Estimation of coronary flow reserve using the thrombolysis in myocardial infarction (TIMI) frame count method. Am. J. Cardiol. 83:1562–1565, 1999.

    Google Scholar 

  82. Marcus, M., C. Wright, D. Doty, C. Eastham, D. Laughlin, P. Krumm, C. Fastenow, and M. Brody. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ. Res. 49:877–891, 1981.

    Google Scholar 

  83. Marcus, M. L., D. B. Doty, L. F. Hiratzka, C. B. Wright, and C. L. Eastham. Decreased coronary reserve: A mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. New England J. Med. 307:1362–1366, 1982.

    Google Scholar 

  84. Marzilli, M., S. Goldstein, H. N. Sabbah, T. Lee, and P. D. Stein. Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ. Res. 45:634–640, 1979.

    Google Scholar 

  85. Matsumoto, T., M. Goto, H. Tachibana, Y. Ogasawara, K. Tsujioka, and F. Kajiya. Microheterogeneity of myocardial blood flow in rabbit hearts during normoxic and hypoxic states. Am. J. Physiol. 270:H435–H441, 1996.

    Google Scholar 

  86. McGinn, A. L., C. W. White, and R. F. Wilson. Interstudy variability of coronary flow reserve: Influence of heart rate, arterial pressure, and ventricular preload. Circulation 81:1319–1330, 1990.

    Google Scholar 

  87. Mirsky, I. Ventricular and arterial wall stresses based on large deformation analysis. Biophys. J. 13:1141–1159, 1973.

    Google Scholar 

  88. Mori, H., M. Chujo, S. Haruyama, H. Sakamoto, Y. Shinozaki, M. Uddin-Mohammed, A. Iida, and H. Nakazawa. Local continuity of myocardial blood flow studied by monochromatic synchrotron radiation-excited x-ray fluorescence spectrometry. Circ. Res. 76:1088–1100, 1995.

    Google Scholar 

  89. Mosher, P., J. Ross, Jr., P. A. McFate, and R. F. Shaw. Control of coronary blood flow by an autoregulatory mechanism. Circ. Res. 14:250–259, 1964.

    Google Scholar 

  90. Mueller, T. M., M. L. Marcus, R. E. Kerber, Y. A. Young, R. W. Barnes, and F. M. Abboud. Effect of renal hypertension and left ventricular hypertrophy on the coronary circulation in dogs. Circ. Res. 42:543–549, 1978.

    Google Scholar 

  91. Murray, P. A., and S. F. Vatner. Reduction of maximal coronary vasodilator capacity in conscious dogs with severe right ventricular hypertrophy. Circ. Res. 48:25–33, 1981.

    Google Scholar 

  92. Nematzadeh, D., J. C. Rose, T. Schryver, and P. A. Kot. Analysis of methodology for measurement of intramyocardial pressure. Basic Res. Cardiol. 79:86–97, 1984.

    Google Scholar 

  93. Nissen, S. E., J. L. Elion, D. C. Booth, J. Evans, and A. N. DeMaria. Value and limitations of computer analysis of digital subtraction angiography in the assessment of coronary flow reserve. Circulation 73:562–571, 1986.

    Google Scholar 

  94. Noto, N., K. Karasawa, M. Ayusawa, M. Misawa, N. Sumitomo, T. Okada, and K. Harada. Measurement of coronary flow reserve in children by transthoracic Doppler echocardiography. Am. J. Cardiol. 80:1638–1639, 1997.

    Google Scholar 

  95. O'Keefe, D. D., J. I. E. Hoffman, R. Cheitlin, M. J. O'Neill, J. R. Allard, and E. Shapkin. Coronary blood flow in experimental canine left ventricular hypertrophy. Circ. Res. 43:43–51, 1978.

    Google Scholar 

  96. Pepine, C. J., J. Mehta, W. W. Webster, Jr., and W. W. Nichols. In vivo validation of a thermodilution method to determine regional left ventricular blood flow in patients with coronary disease. Circulation 58:795–802, 1978.

    Google Scholar 

  97. Pijls, N. H., W. R. Aengevaeren, G. J. Uijen, A. Hoevelaken, T. Pijnenburg, K. van Leeuwen, and T. van der Werf. Concept of maximal flow ratio for immediate evaluation of percutaneous transluminal coronary angioplasty result by videodensitometry (see Comments). Circulation 83:854–865, 1991.

    Google Scholar 

  98. Pijls, N. H., G. J. Bech, M. I. el Gamal, H. J. Bonnier, B. De Bruyne, B. Van Gelder, H. R. Michels, and J. J. Koolen. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J. Am. Coll. Cardiol. 25:1522–1528, 1995.

    Google Scholar 

  99. Pijls, N. H., B. De Bruyne, K. Peels, P. H. Van Der Voort, H. J. Bonnier, J. K. J. J. Bartunek, and J. J. Koolen. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses (see Comments). New England J. Med. 334:1703–1708, 1996.

    Google Scholar 

  100. Pijls, N. H., B. Van Gelder, P. Van der Voort, K. Peels, F. A. Bracke, H. J. Bonnier, and M. I. el Gamal. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92:3183–3193, 1995.

    Google Scholar 

  101. Pijls, N. H., J. A. van Son, R. L. Kirkeeide, B. De Bruyne, and K. L. Gould. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87:1354–1367, 1993.

    Google Scholar 

  102. Pijls, N. H. J., and B. De Bruyne. Coronary Pressure. Dordrecht: Kluwer Academic, 1997.

    Google Scholar 

  103. Pitka¨nen, O. P., P. Nuutila, O. T. Raitakari, K. Porkka, H. Iida, I. Nuotio, T. Ro¨nnemaa, J. Viikari, M. R. Taskinen, C. Ehnholm, and J. Knuuti. Coronary flow reserve in young men with familial combined hyperlipidemia. Circulation 99:1678–1684, 1999.

    Google Scholar 

  104. Rabbany, S. Y., J. Y. Kresh, and A. Noordergraaf. Intramyocardial pressure: interaction of myocardial fluid pressure and fiber stress. Am. J. Physiol. 257:H357–H364, 1989.

    Google Scholar 

  105. Redberg, R. F., Y. Sobol, T. M. Chou, M. Malloy, S. Kumar, E. Botvinick, and J. Kane. Adenosine-induced coronary vasodilation during transesophageal Doppler echocardiography. Rapid and safe measurement of coronary flow reserve ratio can predict significant left anterior descending coronary stenosis. Circulation 92:190–196, 1995.

    Google Scholar 

  106. Segers, P., G. Fostier, J. Neckebroeck, and P. Verdonck. Assessing coronary artery stenosis severity: In vitro validation of the concept of fractional flow reserve. Cathet. Cardiovasc. Interv. 46:375–379, 1999.

    Google Scholar 

  107. Shaw, R. F., P. Mosher, J. Ross, Jr., J. I. Joseph, and A. S. J. Lee. Physiologic principles of coronary perfusion. J. Thorac. Cardiovasc. Surg. 44:608–616, 1962.

    Google Scholar 

  108. Stapleton, D. D., T. C. Moffett, D. G. Baskin, and J. B. Bassingthwaighte. Autoradiographic assessment of blood flow heterogeneity in the hamster heart. Microcirculation (Philadelphia) 2:277–282, 1995.

    Google Scholar 

  109. Strauer, B. E. The coronary circulation in hypertensive heart disease. Hypertension (Dallas) 6:74–80, 1984.

    Google Scholar 

  110. Strauer, B. E. The significance of coronary reserve in clinical heart disease. J. Am. Coll. Cardiol. 15:775–783, 1990.

    Google Scholar 

  111. Strauer, B. E. The concept of coronary flow reserve. J. Cardiovasc. Pharmacol. 19:S67–S80, 1992.

    Google Scholar 

  112. Takagi, A., Y. Tsurumi, Y. Ishii, K. Suzuki, M. Kawana, and H. Kasanuki. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: Relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100:250–255, 1999.

    Google Scholar 

  113. Tauchert, M., and H. H. Hilger. Application of the coronary reserve concept to the study of myocardial perfusion. In: The Patho-Physiology of Myocardial Perfusion, edited by W. Schaper. Amsterdam: Elsevier/North-Holland Biomedical, 1979, pp. 141–167.

    Google Scholar 

  114. ter Keurs, H. E. D. J. Regulation of cardiac contraction in the normal and failing heart: Cellular aspects. Can. J. Cardiol. 9:1F–11F, 1993.

    Google Scholar 

  115. Uhlig, P. N., R. W. Baer, G. J. Vlahakes, F. L. Hanley, L. M. Messina, and J. I. E. Hoffman. Arterial and venous coronary pressure–flow relations in anesthetized dogs. Evidence for a vascular waterfall in epicardial coronary veins. Circ. Res. 55:238–248, 1984.

    Google Scholar 

  116. Verrier, E. D., R. W. Baer, R. F. Hickey, G. J. Vlahakes, and J. I. E. Hoffman. Transmural pressure–flow relations during diastole in the canine left ventricle. Circulation 62, 1980.

  117. Vlahakes, G. J., R. W. Baer, P. N. Uhlig, E. D. Verrier, J. D. Bristow, and J. I. E. Hoffman. Adrenergic influence in the coronary circulation of conscious dogs during maximal vasodilation with adenosine. Circ. Res. 51:371–384, 1982.

    Google Scholar 

  118. Wicker, P., and R. C. Tarazi. Coronary blood flow in left ventricular hypertrophy: A review of experimental data. Eur. Heart J. 3:111–118, 1982.

    Google Scholar 

  119. Wolfkiel, C. J., and B. H. Brundage. Measurement of myocardial blood flow by UFCT: Towards clinical applicability. Int. J. Cardiac Imaging 7:89–100, 1991.

    Google Scholar 

  120. Wolfkiel, C. J., and B. H. Brundage. Transfer-function analysis of UFCT myocardial time–density curves by timevarying recursive least-squares analysis. IEEE Trans. Biomed. Eng. 41:69–76, 1994.

    Google Scholar 

  121. Yada, T., O. Hiramatsu, A. Kimura, M. Goto, Y. Ogasawara, K. Tsujioka, S. Yamamori, K. Ohno, H. Hosaka, and F. Kajiya. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ. Res. 72:939–946, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, J.I.E. Problems of Coronary Flow Reserve. Annals of Biomedical Engineering 28, 884–896 (2000). https://doi.org/10.1114/1.1308503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1308503

Navigation