Skip to main content
Log in

Noninvasive Electrical Imaging of the Heart: Theory and Model Development

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this work is to begin quantifying the performance of a recently developed activation imaging algorithm of Huiskamp and Greensite [IEEE Trans. Biomed. Eng. 44:433–446]. We present here the modeling and computational issues associated with this process. First, we present a practical construction of the appropriate transfer matrix relating an activation sequence to body surface potentials from a general boundary value problem point of view. This approach makes explicit the role of different Green's functions and elucidates features (such as the anisotropic versus isotropic distinction) not readily apparent from alternative formulations. A new analytic solution is then developed to test the numerical implementation associated with the transfer matrix formulation presented here and convergence results for both potentials and normal currents are given. Next, details of the construction of a generic porcine model using a nontraditional data-fitting procedure are presented. The computational performance of this model is carefully examined to obtain a mesh of an appropriate resolution to use in inverse calculations. Finally, as a test of the entire approach, we illustrate the activation inverse procedure by reconstructing a known activation sequence from simulated data. For the example presented, which involved two ectopic focii with large amounts of Gaussian noise (100 μV rms) present in the torso signals, the reconstructed activation sequence had a similarity index of 0.880 when compared to the input source. © 2001 Biomedical Engineering Society.

PAC01: 8719Nn, 8719Hh, 8710+e, 0210Yn, 0230Sa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barr, R. C., and M. S. Spach. Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ. Res.42.:661–675., 1978.

    Google Scholar 

  2. Bradley, C. P. A three-dimensional torso model for electrocardiology. PhD thesis, The University of Auckland., New Zealand., 1998.

    Google Scholar 

  3. Bradley, C. P., M. P. Nash., L. K. Cheng., A. J. Pullan., and D. J. Paterson. Electrocardiographic inverse validation study: Model development and methodology. FASEB J.14.:A442., 2000.

    Google Scholar 

  4. Bradley, C. P., A. J. Pullan., and P. J. Hunter. Geometric modeling of the human torso using cubic Hermite elements. Ann. Biomed. Eng.25.:96–111., 1997.

    Google Scholar 

  5. Bradley, C. P., A. J. Pullan., and P. J. Hunter. Effects of material properties and geometry on electrocardiographic forward simulations. Ann. Biomed. Eng.28.:721–741., 2000.

    Google Scholar 

  6. Buist, M., and A. Pullan. From cell to body surface: A fully coupled approach. J. Electrocardiol. (in press).

  7. Cheng, L. K., and A. J. Pullan. Towards noninvasive electrical heart imaging. In: Proceedings of the First Joint Meeting of BMES & IEEE/EMBS. Atlanta, GA, October 1999, p. 57.

  8. Cuppen, J., and A. van Oosterom. Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng.31.:652–659., 1984.

    Google Scholar 

  9. Fischer, G., B. Tilg., P. Wach., R. Modre., U. Leder., and H. Nowak. Application of high-order boundary elements to the electrocardiographic inverse problem. Comput. Methods Programs Biomed.58.:119–131., 1999.

    Google Scholar 

  10. Foster, K. R., and H. P. Schwan. Dielectric properties of tissue and biological materials: A critical review. Crit. Rev. Biomed. Eng.17.:25–104., 1989.

    Google Scholar 

  11. Geddes, L. A., and L. E. Baker. The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng.5.:271–293., 1967.

    Google Scholar 

  12. Green, L. S., B. Taccardi., P. R. Ershler., and R. L. Lux. Effects of conducting media on isopotential and isochrone distributions. Circulation..84.:2513–2521., 1991.

    Google Scholar 

  13. Greensite, F..Remote reconstruction of confined wave-front propagation. Inverse Probl.11.:361–370., 1995.

    Google Scholar 

  14. Greensite, F. Computational Inverse Problems in Electrocardiography. Southampton, U.K.: WIT Press, 2001, Chap. 3.

    Google Scholar 

  15. Greensite, F., and G. Huiskamp. An improved method for estimating epicardial potentials from the body surface. IEEE Trans. Biomed. Eng.45.:98–104., 1998.

    Google Scholar 

  16. Gulrajani, R. M., F. A. Roberge., and P. Savard. Moving dipole inverse ECG and EEG solutions. IEEE Trans. Biomed. Eng.31.:903–910., 1984.

    Google Scholar 

  17. Huiskamp, G., and F. Greensite. A new method for myocardial activation imaging. IEEE Trans. Biomed. Eng.44.:433–446., 1997.

    Google Scholar 

  18. Huiskamp, G. J., and A. van Oosterom. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng.35.:1047–1059., 1988.

    Google Scholar 

  19. Le Grice, I. J., P. J. Hunter., and B. H. Smaill. Laminar structure of the heart: A mathematical model. Am. J. Physiol.272.:H2466-H2476., 1997.

    Google Scholar 

  20. Martin, R. O., T. C. Pilkington., and M. Morrow. Statistically constrained inverse electrocardiography. IEEE Trans. Biomed. Eng.22.:487–492., 1975.

    Google Scholar 

  21. Nash, M. P., C. P. Bradley., L. K. Cheng., A. J. Pullan., and D. J. Paterson. Electrocardiographic inverse validation study: In vivo. mapping and analysis. FASEB J.14.:A442., 2000.

    Google Scholar 

  22. Nash, M. P., C. P. Bradley, L. K. Cheng, A. J. Pullan, and D. J. Paterson. An experimental-computational framework for validating in vivo. ECG inverse algorithm. Intl. J. Bioelectromagn. 2, 2000.

  23. Nash, M. P., C. P. Bradley, A. Kardos, A. J. Pullan, and D. J. Paterson. An experimental model to correlate simultaneous body surface and epicardial electropotential recordings in vivo. Chaos, Solitons Fractals. (in press).

  24. Nielsen, P. M. F., I. J. Le Grice., B. H. Smaill., and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol.260.:H1365-H1378., 1991.

    Google Scholar 

  25. Oster, H., and Y. Rudy. The use of temporal information in the regularization of the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng.39.:65–75., 1992.

    Google Scholar 

  26. Oster, H., B. Taccardi., R. Lux., P. Ershler., and Y. Rudy. Noninvasive electrocardiographic imaging. Reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation..96.:1012–1024., 1997.

    Google Scholar 

  27. Oster, H., B. Taccardi., R. Lux., P. Ershler., and Y. Rudy. Electrocardiographic imaging. Noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms. Circulation..97.:1496–1507., 1998.

    Google Scholar 

  28. Pullan, A. J..A high-order coupled finite-element/boundary-element torso model. IEEE Trans. Biomed. Eng.43.:292–298., 1996.

    Google Scholar 

  29. Pullan, A. J., L. K. Cheng, M. P. Nash, and D. J. Paterson. Noninvasive electrical imaging of the heart. In: Proceedings of the First Joint Meeting of BMES & IEEE/EMBS. Atlanta, GA, October 1999, p. 191.

  30. Rush, S., J. A. Abildskov., and R. McFee. Resistivity of body tissues at low frequencies. Circ. Res.12.:40–50., 1963.

    Google Scholar 

  31. Spach, M. S., W. T. Miller.III., E. Miller-Jones., R. B. Warren., and R. C. Barr. Extracellular potentials related to intracellular potentials during impulse conduction in anisotropic cardiac muscle. Circ. Res.45.:188–204., 1979.

    Google Scholar 

  32. Tikhonov, A., and V. Arsenin. Solution of Ill-Posed Problems. Washington, DC: Wiley, 1977.

  33. Tomlinson, K. A. Finite element solution of an eikonal equation for excitation wavefront propagation in ventricular myocardium. PhD thesis, The University of Auckland, New Zealand, 2000.

    Google Scholar 

  34. Yamashita, Y., and D. Geselowitz. Source-field relationships for cardiac generators on the heart surface based on their transfer coefficients. IEEE Trans. Biomed. Eng.32.:964–970., 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pullan, A.J., Cheng, L.K., Nash, M.P. et al. Noninvasive Electrical Imaging of the Heart: Theory and Model Development. Annals of Biomedical Engineering 29, 817–836 (2001). https://doi.org/10.1114/1.1408921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1408921

Navigation