Skip to main content
Log in

A Numerical Study of Blood Flow in Coronary Artery Bypass Graft Side-to-Side Anastomoses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Purpose: When sequential grafts are used in multivessel coronary artery bypass grafting, the graft first supplies blood to one or more coronary arteries via a side-to-side anastomosis. We studied hemodynamics in idealized models of “parallel” and “diamond” side-to-side anastomoses, identifying features that might promote restenosis. Methods: Blood flow was computed in three representative anastomosis configurations: parallel side-to-side, diamond side-to-side, and end-to-side. We compared configurations and the effect of host-graft diameter ratio. Results:Hemodynamic patterns depended strongly on anastomosis geometry and graft/host diameter ratio. In the distal graft, the diamond configuration had large areas of low wall shear stress (WSS) and high spatial WSS gradients. In the proximal graft the unfavorable WSS patterns were comparable for all models, while the distal portion of the host artery the diamond model was best. Models with smaller host arteries had smaller regions of low WSS. Conclusions: The parallel configuration was preferred over the diamond for maintaining graft patency, while the diamond configuration appeared best for maintaining host artery patency. Since graft patency is critical, parallel configurations seem hemodynamically advantageous. Larger graft/host ratios have better hemodynamic performance than smaller ones. © 2002 Biomedical Engineering Society.

PAC2002: 8719Uv, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bartley, T. D., J. C. Bigelow, and U. S. Page. Aortocoronary bypass grafting with multiple sequential anastomoses to a single vein. Arch. Surg. 105:915–917, 1972.

    Google Scholar 

  2. Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: Mechanical injury or flow induced. J. Vasc. Surg. 15:708–717, 1992.

    Google Scholar 

  3. Bonert, M., J. G. Myers, S. E. Fremes, and C. R. Ethier. Hemodynamics in side-to-side anostomoses: Evaluation of geometric factors. Can. J. Cardiol. 15:160D, 1999.

    Google Scholar 

  4. Butany, J. W., T. E. David, and M. Ojha. Histological and morphometric analyses of early and late aortocoronary vein grafts and distal anastomoses. Can. J. Cardiol. 14:671–677, 1998.

    Google Scholar 

  5. Christenson, J. T., F. Simonet, and M. Schmuziger. Sequential vein bypass grafting: Tactics and long-term results. Cardiovasc. Surg. 6:389–397, 1998.

    Google Scholar 

  6. Debatin, J. F., J. A. Strong, H. D. Sostman, R. Negro-Vilar, S. S. Paine, J. M. Douglas, Jr., and N. J. Pelc. MR characterization of blood flow in native and grafted internal mammary arteries. Magn. Reson. Imaging 3:443–450, 1993.

    Google Scholar 

  7. Dilley, R. J., J. K. McGeachie, and F. J. Prendergast. A review of the histologic changes in vein-to-artery grafts, with particular reference to intimal hyperplasia. Arch. Surg. 123:691–696, 1988.

    Google Scholar 

  8. Dion, R., D. Glineur, R. Verhelst, P. Noirhomme, G. El Khoury, E. Degrave, and C. Hanet. Long-term clinical and angiographic follow-up of sequential internal thoracic artery grafting. Eur. J. Cardiothoracic Surg. 17:407–414, 2000.

    Google Scholar 

  9. Ethier, C. R., S. Prakash, D. A. Steinman, R. L. Leask, G. G. Couch, and M. Ojha. Steady flow separation patterns in a 45 degree junction. J. Fluid Mech. 411:1–38, 2000.

    Google Scholar 

  10. Ethier, C. R., D. A. Steinman, and M. Ojha. Comparisons between computational hemodynamics, photochromic dye flow visualization and magnetic resonance velocimetry. In: Hemodynamics of Internal Organs, edited by M. W. Collins and Y. Xu. Southampton, UK: Computational Mechanics Publications, 1999, pp. 131–184.

    Google Scholar 

  11. Ethier, C. R., D. A. Steinman, X. Zhang, S. R. Karpik, and M. Ojha. Flow waveform effects on end-to-side anastomotic flow patterns. J. Biomech. 31:609–617, 1998.

    Google Scholar 

  12. Favaloro, R. G. Saphenous vein autograft replacement of severe segmental coronary artery occlusion: Operative technique. Ann. Thoracic Surg. 5:334–339, 1968.

    Google Scholar 

  13. Fei, D. Y., J. D. Thomas, and S. E. Rittgers. The effect of angle and flow rate upon the hemodynamics in distal vascular graft anastomoses: A numerical model study. ASME J. Biomech. Eng. 116:331–336, 1994.

    Google Scholar 

  14. Flemma, R. J., W. D. Johnson, and D. Lepley, Jr. Triple aorto-coronary vein bypass as treatment for coronary insufficiency. Arch. Surg. 103:82–83, 1971.

    Google Scholar 

  15. Fortunato, J. E., S. Glagov, and H. S. Bassiouny. Biomechanical factors as regulators of biological responses to vascular grafts. Semin Vasc. Surg. 12:27–37, 1999.

    Google Scholar 

  16. Goldman, S., J. Copeland, T. Moritz, W. Henderson, K. Zadina, T. Ovitt, J. Doherty, R. Read, E. Chesler, and Y. Sako. Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy. Results of a Veterans Administration cooperative study. Circulation 80:1190–1197, 1989.

    Google Scholar 

  17. Gurné, O., P. Chenu, C. Polidori, Y. Louagie, M. Buche, J. P. Haxhe, P. Eucher, B. Marchandise, and E. Schroeder. Functional evaluation of internal mammary artery by pass grafts in the early and late postoperative periods. J. Am. Coll. Cardiol. 25:1120–1128, 1995.

    Google Scholar 

  18. Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29:1297–1308, 1996.

    Google Scholar 

  19. Hughes, P. E., and T. V. How. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis. J. Biomech. 29:855–872, 1996.

    Google Scholar 

  20. Izzat, M. B., R. R. West, A. J. Bryan, and G. D. Angelini. Coronary artery bypass surgery: Current practice in the United Kingdom. Br. Heart J. 71:382–385, 1994.

    Google Scholar 

  21. Kelser, K. A., T. G. Sharp, M. W. Turrentine, and J. W. Brown. Technical considerations and early results of sequential left internal mammary artery bypass grafting to the left anterior descending coronary artery system. J. Cardiovasc. Surg. 5:134–144, 1990.

    Google Scholar 

  22. Keynton, R. S., S. E. Rittgers, and M. C. S. Shu. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: An in vitro model study. ASME J. Biomech. Eng. 113:458–463, 1991.

    Google Scholar 

  23. Kleinstreuer, C., M. Lei, J. R. Buchanan, and J. P. Archie, Hemodynamics of a femoral graft-artery connector mitigating restenosis. In Advances in Bioengineering, edited by M. L. Hull. New York: ASME, 1995, Vol. 31, p. 171.

    Google Scholar 

  24. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    Google Scholar 

  25. Lei, M., C. Kleinstreuer, and J. Archie. Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomech. 29:1605–1614, 1996.

    Google Scholar 

  26. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282:2035–2042, 1999.

    Google Scholar 

  27. Minev, P. D., and C. R. Ethier. A characteristic/finite element algorithm for the Navier-Stokes equation using unstructured grids. Comput. Methods Appl. Mech. Eng. 178:39–50, 1999.

    Google Scholar 

  28. Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121:265–272, 1999.

    Google Scholar 

  29. Moore, Jr., J. E., C. Xu, S. Glagov, and C. K. D. Zarins. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Arteriosclerosis 110:225–240, 1994.

    Google Scholar 

  30. Nagel, T., N. Resnick, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler., Thromb., Vasc. Biol. 19:1825–1834, 1999.

    Google Scholar 

  31. Ojha, M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ. Res. 74:1227–1231, 1994.

    Google Scholar 

  32. Ojha, M., R. S. Cobbold, and K. W. Johnston. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J. Vasc. Surg. 19:1067–1073, 1994.

    Google Scholar 

  33. Ojha, M., R. L. Leask, K. W. Johnston, T. E. David, and J. Butany. Histology and morphology of 59 internal thoracic artery grafts and their distal anastomoses. Ann. Thoracic Surg. 70:1338–1344, 2000.

    Google Scholar 

  34. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Google Scholar 

  35. Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. ASME J. Biomech. Eng. 123:134–144, 2001.

    Google Scholar 

  36. Rittgers, S. E., P. E. Karayannacos, and J. F. Guy. Velocity distributions and intimal proliferation in autologous vein grafts in dogs. Circ. Res. 42:792–801, 1978.

    Google Scholar 

  37. Sottiurai, V. S., J. S. Yao, R. C. Batson, S. L. Sue, R. Jones, and Y. A. Nakamura. Distal anastomotic intimal hyperplasia: Histopathologic character and biogenesis. Ann. Vasc. Surg. 3:26–33, 1989.

    Google Scholar 

  38. St. Rammos, K., G. J. Koullias, T. J. Pappou, A. J. Bakas, P. G. Panagopoulos, and S. G. Tsangaris. A computer model for the prediction of left epicardial coronary blood flow in normal, stenotic and bypassed coronary arteries, by single or sequential grafting. Cardiovasc. Surg. 6:635–648, 1998.

    Google Scholar 

  39. Staalsen, N. H., M. Ulrich, J. Winther, E. M. Pedersen, T. How, and H. Nygaard. The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo. J. Vasc. Surg. 21:460–471, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonert, M., Myers, J.G., Fremes, S. et al. A Numerical Study of Blood Flow in Coronary Artery Bypass Graft Side-to-Side Anastomoses. Annals of Biomedical Engineering 30, 599–611 (2002). https://doi.org/10.1114/1.1481052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1481052

Navigation