Skip to main content
Log in

Influence of Anthropometric and Mechanical Variations on Functional Instability in the ACL-Deficient Knee

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Individual variations in joint anatomy, tissue mechanical properties, and muscle strength of the knee are believed to affect the clinical outcome of ACL-deficient patients, but the effects have not been studied systematically. The impact of individual anthropometric and mechanical variation on functional stability of the ACL-deficient knee was investigated in this study using a two-dimensional mathematical knee model. The model included the tibiofemoral and the patellofemoral articulations, four ligaments, the medial capsule, and four muscle units surrounding the knee. Simulations were conducted to determine tibial anterior translation as well as tibiofemoral and patellofemoral joint loading at a single selected position during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled ACL-deficient knee in order to examine the level of the hamstring muscle forces required to prevent abnormal tibial anterior translation relative to the femur. Simulations were repeated using incremental variations in the selected anthropometric and mechanical properties of the ACL-deficient knee. It was found that bony geometry of the knee joint, especially the slope of tibial plateau, strongly affected both the tibial translations in the ACL-deficient knee and the effectiveness of the hamstring muscles to compensate for the ACL deficiency. For instance, simulations indicated that, due to ACL deficiency, the tibial anterior displacement increased by 9.1 mm for a tibial slope angle of 4° compared to 15.2 mm for a tibial slope angle of 12°. Future outcome studies for ACL-deficient knee may be required to include individual anthropometric and mechanical parameters of the knee as covariants. © 2003 Biomedical Engineering Society.

PAC2003: 8719Rr, 8719Ff, 8719St

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rahman, E., and M. S. Hefzy. A two-dimensional dynamic anatomical model of the human knee joint. J. Biomech. Eng. 115:357–365, 1993.

    Google Scholar 

  2. Allen, C. R., E. K. Wong, G. A. Livesay, M. Sakane, F. H. Fu, and S. L. Woo. Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J. Orthop. Res. 18:109–115, 2000.

    Google Scholar 

  3. Andriacchi, T. Dynamics of pathological motion: Applied to the anterior cruciate deficient knee. J. Biomech. 23:99–105, 1990.

    Google Scholar 

  4. Berchuck, M., T. P. Andriacchi, B. R. Bach, and B. Reider. Gait adaptations by patients who have a deficient anterior cruciate ligament. 72A, 871–877, 1990.

    Google Scholar 

  5. Beynnon, B., J. Yu, D. Huston, B. Fleming, R. Johnson, L. Haugh, and M. H. Pope. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. J. Biomech. Eng. 118:227–239, 1996.

    Google Scholar 

  6. Blankevoort, L., R. Huiskes, and A. de Lange. Recruitment of knee joint ligaments. J. Biomech. Eng. 113:94–103, 1991.

    Google Scholar 

  7. Blankevoort, L., and R. Huiskes. Validation of a three-dimensional model of the knee. J. Biomech. 29:955–961, 1996.

    Google Scholar 

  8. Butler, D. L., F. R. Noyes, and E. S. Grood. Ligamentous restraints to anterior-posterior drawer in the human knee. 62A, 259–270, 1980.

    Google Scholar 

  9. Butler, D. L., E. S. Grood, F. R. Noyes, and A. N. Sodd. On the interpretation of our anterior cruciate ligament data. Clin. Orthop. 196:26–34, 1985.

    Google Scholar 

  10. Daniel, D. M. Selecting patients for ACL surgery. The Anterior Cruciate Ligament: Current and Future Concepts. New York: Raven, 1993, pp. 251–258.

    Google Scholar 

  11. Dejour, H., P. Neyret, and M. Bonnin. Monopodal weight-bearing radiography of the chronically unstable knee, edited by R. Jakob and H.-U. Staubli. Knee and the Cruciate Ligaments: Anatomy, Biomechanics, Clinical Aspects, Reconstruction, Complications, Rehabilitation. Berlin: Springer, 1992, pp. 568–576.

    Google Scholar 

  12. Delp, S. L. Ph.D. dissertation, Stanford University, Stanford, CA, 1990.

    Google Scholar 

  13. Elias, S. G., M. A. R. Freeman, and E. I. Gokcay. A correlative study of the geometry and anatomy of the distal femur. Clin. Orthop. 260:98–103, 1990.

    Google Scholar 

  14. Friederich, J. A., and R. A. Brand. Muscle fiber architecture in the human lower limb. J. Biomech. 23:91–95, 1990.

    Google Scholar 

  15. Fukubayashi, T., P. A. Torzilli, M. F. Sherman, and R. F. Warren. An biomechanical evaluation of anterior–posterior motion of the knee. 64A, 258–264, 1982.

    Google Scholar 

  16. Garg, A., and P. S. Walker. Prediction of total knee motion using a three-dimensional computer-graphics model. J. Biomech. 23:45–58, 1990.

    Google Scholar 

  17. Giove, T. P., S. J. Miller, B. E. Kent, T. L. Stanford, and J. G. Garrick. Nonoperative treatment of the torn anterior cruciate ligament. 65A, 184–192, 1983.

    Google Scholar 

  18. Haimes, J. L., R. R. Wroble, E. S. Grood, and F. R. Noyes. Role of the medial structures in the intact and ACL-deficient knee. Am. J. Sports Med. 22:402–409, 1994.

    Google Scholar 

  19. Harrington, I. J. A bioengineering analysis of force actions at the knee in normal and pathological gait. J. Biomech. Eng. 11:167–172, 1976.

    Google Scholar 

  20. Hefzy, M. A., and E. S. Grood. Sensitivity of insertion locations on length patterns of anterior cruciate ligament fibers. J. Biomech. Eng. 108:73–82, 1986.

    Google Scholar 

  21. Hefzy, M. A., E. S. Grood, and F. R. Noyes. Factors affecting the region of most isometric femoral attachments, Part II: the anterior cruciate ligament. Am. J. Sports Med. 17:208–216, 1989.

    Google Scholar 

  22. Jackson, R. W., R. I. Peters, and R. L. Marczyk. Late results of untreated anterior cruciate ligament rupture (abstract). 62b, 127, 1980.

    Google Scholar 

  23. Jacobsen, K. Osteoarthrosis following insufficiency of the cruciate ligaments in man. Acta Orthop. Scand. 48:520–526, 1977.

    Google Scholar 

  24. Jakob, R. P. Knee and the Cruciate Ligaments: Anatomy, Biomechanics, Clinical Aspects, Reconstruction, Complications, Rehabilitation. Berlin: Springer, 1992, pp. 270–275.

    Google Scholar 

  25. Kadaba, M. P., H. K. Ramakrishnan, M. E. Wootten, J. Gainey, G. Gorton, and G. V. Cochran. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 7:849–860, 1989.

    Google Scholar 

  26. Kålund, S., T. Sinkjær, L. Arendt-Nielsen, and O. Simonsen. Altered timing of hamstring muscle action in anterior cruciate ligament deficient patients. Am. J. Sports Med. 18:245–248, 1990.

    Google Scholar 

  27. Kannua P., and M. Jarvinen. Conservatively treated tears of the anterior cruciate ligament. 69A, 1007–1012, 1987.

  28. Lafortune, M. A., P. R. Cavanagh, H. J. Sommer, and A. Kalenak. Three-dimensional kinematics of the human knee during walking. J. Biomech. 25:347–357, 1992.

    Google Scholar 

  29. Li, G., T. W. Rudy, C. Allen, M. Sakane, and S. L. Y. Woo. Effect of combined axial compressive and anterior tibial loads on forces in the anterior cruciate ligament: A porcine study. J. Orthop. Res. 16:122–127, 1998.

    Google Scholar 

  30. Liu, W., and M. Maitland. The effect of hamstring compensation for anterior laxity in the ACL-deficient knee during gait. J. Biomech. 33:871–879, 2000.

    Google Scholar 

  31. Maitland, M. E., G. D. Bell, N. G. H. Mohtadi, and W. Herzog. Quantitative analysis of anterior cruciate ligament instability. Clin. Biomech. (Los Angel.)10:93–97, 1995.

    Google Scholar 

  32. McDaniel, W. J., and T. B. Dameron. The untreated anterior cruciate ligament rupture. Clin. Orthop. 172:158–163, 1983.

    Google Scholar 

  33. Nisell, R., G. Nemeth, and H. Ohlsen. Joint forces in extension of the knee. Acta Orthop. Scand. 57:41–46, 1986.

    Google Scholar 

  34. Noyes, F. R., P. A. Mooar, D. S. Mathews, and D. L. Butler. The symptomatic anterior cruciate-deficient knee. Part I. The long-term functional disability in athletically active individuals. 65A, 154–162, 1983a.

    Google Scholar 

  35. Noyes, F. R., D. S. Mathews, P. A. Mooar, and E. S. Grood. The symptomatic anterior cruciate-deficient knee. Part II. The results of rehabilitation, activity modification and counseling on functional disability. 65A, 163–174, 1983b.

    Google Scholar 

  36. Odensten, M., and J. Gillquist. Functional anatomy of the anterior cruciate ligament and a rationale for reconstruction. 67A, 257–262, 1985.

    Google Scholar 

  37. Shelburne, K. B., and M. G. Pandy. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J. Biomech. 30:163–176, 1997.

    Google Scholar 

  38. Snyder-Mackler, L., G. K. Fitzgerald, A. R. Bartolozzi, and M. G. Ciccotti. The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am. J. Sports Med. 25:191–195, 1997.

    Google Scholar 

  39. Solomonow, M., R. Baratta, B. H. Zhou, H. Shoji, W. Bose, C. Beck, and R. D'Ambrosia. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am. J. Sports Med. 15:207–213, 1987.

    Google Scholar 

  40. Sullivan D., M. Levy, S. Sheskier, P. A. Torzilli, and R. F. Warren. Medial restraints to anterior-posterior motion of the knee. 66A, 930–936, 1984.

    Google Scholar 

  41. Torzilli P. A., R. L. Greenberg, R. W. Hood, H. Pavlov, and J. N. Insall. Measurement of anterior-posterior motion of the knee in injured patients using a biomechanical stress technique. 66A, 1438–1442, 1984.

    Google Scholar 

  42. Torzilli, P. A., X. Deng, and R. F. Warren. The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am. J. Sports Med. 22:105–112, 1994.

    Google Scholar 

  43. Tumer, S. T., and A. E. Engin. Three-body segment dynamic model of the human knee. J. Biomech. Eng. 115:350–356, 1993.

    Google Scholar 

  44. Walla, D. J., J. Albright, E. McAuley, R. K. Martin, V. Eldridge, and G. El-Khoury. Hamstring control and the unstable anterior cruciate ligament-deficient knee. Am. J. Sports Med. 13:34–39, 1985.

    Google Scholar 

  45. Warren, R. F., and I. M. Levy. Meniscal lesions associated with anterior cruciate ligament injury. Clin. Orthop. 172:32–37, 1983.

    Google Scholar 

  46. Winter, D. A. Biomechanics and Motor Control of Human Movement, 2nd ed. New York: Wiley, 1990.

    Google Scholar 

  47. Wismans, J., F. Veldpaus, and J. Janssen. A three-dimensional mathematical model of the knee-joint. J. Biomech. 13:677–685, 1980.

    Google Scholar 

  48. Yamaguchi, G. T., and F. E. Zajac. A planar model of the knee joint to characterize the knee extensor mechanism. J. Biomech. 22:1–10, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Maitland, M.E. Influence of Anthropometric and Mechanical Variations on Functional Instability in the ACL-Deficient Knee. Annals of Biomedical Engineering 31, 1153–1161 (2003). https://doi.org/10.1114/1.1615572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1615572

Navigation