Skip to main content
Log in

Sensitivity Distributions of Impedance Cardiography Using Band and Spot Electrodes Analyzed by a Three-Dimensional Computer Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Impedance cardiography (ICG) offers a safe, noninvasive, and inexpensive method to track stroke volume estimates over long periods of time. Several modified ICG measurement configurations have been suggested where for convenience or improved performance the standard band electrodes are replaced with electrocardiogram electrodes. This report assesses the sensitivity of the conventional and three modified ICG methods in detecting regional conductivity changes in the simulated human thorax. The theoretical analyses of the measurement sensitivity employ the reciprocity theorem and the lead field theory with a highly detailed, anatomically accurate, three-dimensional computer thorax model. This model is based on the finite-difference element method and the U.S. National Library of Medicine's Visible Human Man anatomy data. The results obtained indicate that the conventional four-band ICG is not specifically sensitive to detect conductivity changes in the region of the heart, aortas, and lungs. Analyzed modified electrode configurations do not reproduce exactly the measurement sensitivity distribution of the conventional four-band ICG. Thus, although the signals measured with modified spot arrangements may appear similar to the four-band configuration, the distribution of the signal origin may not be the same. Changing from band to spot electrodes does not overcome the methodological problems associated with ICG. © 1998 Biomedical Engineering Society.

PAC98: 8790+y, 8710+e, 8437+q

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Atzler, E., and G. Lehmann. Ÿ ber ein neues verfahren zur darstellung der herztätigkeit (dielektrographie). Arbeitsphysiologie6:636-680, 1932.

    Google Scholar 

  2. Bernstein, D. P. A new stroke volume equation for thoracic electrical bioimpedance-Theory and rationale. Crit. Care Med.14:904-909, 1986.

    Google Scholar 

  3. Epstein, B. R., and K. R. Foster. Anisotrophy as a dielectric property of skeletal muscle. Med. Biol. Eng. Comput.21:51- 55, 1983.

    Google Scholar 

  4. Fuller, H. D. Validity of cardiac output measurement by thoracic impedance: A meta-analysis. Clin. Invest. Med.15:103-112, 1992.

    Google Scholar 

  5. Geddes, L. A., and L. E. Baker. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. Comput.5:271-293, 1967.

    Google Scholar 

  6. Geselowitz, D. B. An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng.18:38-41, 1971.

    Google Scholar 

  7. Handelsman, H. Public Health Service reassessment: Measuring cardiac output by electrical bioimpedance. U.S. Dept. Health and Human Services, Public Health Service, Agency for Health Care Policy and Research; 1991 Health Technology Assessment Report Nos. 6:1-13.

  8. Heinonen, T., H. Eskola, P. Kauppinen, and J. Malmivuo. Tissue segmentation of visible human man data using IARD method. Med. Biol. Eng. Comput.(Suppl. 1, part 1) 34:239- 240, 1996.

    Google Scholar 

  9. Huang, Z., Z. Zhenshen, and Y. Wu. Monitoring impedance cardiography by adaptive method during external counterpulsation. Proc. IEEE13(2):819-820, 1991.

    Google Scholar 

  10. Hyttinen, J. Development of regional aimed ECG leads especially for myocardial ischemia diagnosis, Ph.D. Dissertation. Tampere, Finland: Tampere University of Technology, 1994.

    Google Scholar 

  11. Johnson, C. R. Numerical methods for bioelectric field problems. In: Biomedical Engineering Handbook, edited by J. D. Bronzino. Boca Raton, FL: CRC Press, 1995, pp. 162-180.

    Google Scholar 

  12. Kim, D. W., L. E. Baker, J. A. Pearce, and W. K. Kim. Origins of the impedance change in impedance cardiography by a three-dimensional finite element model. IEEE Trans. Biomed. Eng.35:993-1000, 1988.

    Google Scholar 

  13. Kubicek, W. G., J. N. Karnegis, R. P. Patterson, D. A. Witsoe, and R. H. Mattson. Development and evaluation of an impedance cardiac output system. Aerosp. Med.37:1208- 1212, 1966.

    Google Scholar 

  14. Kubicek, W. G. On the source of peak first time derivative (dZ/dt) during impedance cardiography. Ann. Biomed. Eng.17:459-462, 1989.

    Google Scholar 

  15. Lindberg, D. A., and B. L. Humphreys. Computers in medicine. J. Am. Med. Assoc.273:1667-1668, 1995.

    Google Scholar 

  16. Malmivuo, J., and R. Plonsey. Bioelectromagnetism: Principles and Application of Bioelectric and Biomagnetic Fields. New York: Oxford University Press, 1995.

    Google Scholar 

  17. Nyboer, J., S. Bango, A. Barnett, and R. H. Halsey. Radiocardiograms-The electrical impedance changes of the heart in relation to electrocardiograms and heart sounds. J. Clin. Invest.19:733, 1940.

    Google Scholar 

  18. Patterson, R. P., W. G. Kubicek, E. Kinnen, D. A. Witsoe, and G. Noren. Development of an electrical impedance plethysmography system to monitor cardiac output. Proc. 1st Annu. Rocky Mt. Bioeng. Sympos. 1964, pp. 56-71.

  19. Patterson, R. P., L. Wang, G. McWeigh, R. Burns, and J. Cohn. Impedance cardiography: The failure of sternal electrodes to predict changes in stroke volume. Biol. Psychol.36:33-41, 1993.

    Google Scholar 

  20. Patterson, R. P., L. Wang, B. Raza, and K. Wood. Mapping the cardiogenic impedance signal on the thoracic surface. Med. Biol. Eng. Comput.23:212-216, 1990.

    Google Scholar 

  21. Pedhnekar, S. A., G. D. Jindal, S. N. Nerurkar, J. B. Dharani, A. K. Deshpande, and G. B. Parulkar. Effect of pulmonary circulation on vector impedance cardiogram. J. Postgrad. Med. (Bombay)36:213-218, 1990.

    Google Scholar 

  22. Penney, B. C., N. A. Patwardhan, and H. B. Wheeler. Simplified electrode array for impedance cardiography. Med. Biol. Eng. Comput.23:1-7, 1985.

    Google Scholar 

  23. Rush, S., J. A. Abildskov, and R. McFee. Resistivity of body tissues at low frequencies. Circulation22:40-50, 1963.

    Google Scholar 

  24. Sramek, B. B. Noninvasive technique for measurement of cardiac output by means of electrical impedance. in Proc. of the 5th Intl. Conf. Electrical Bioimpedance, Tokyo, Japan, 1981, pp. 35-39.

  25. Tishcenko, M. I., A. D. Smirno, L. N. Danilov, and A. L. Aleksandrov. Characteristics and clinical use of integral rheography-A new method of measuring the stroke volume (in Russian). Kardiologiya13:54-62, 1973.

    Google Scholar 

  26. Wang, L., and R. Patterson. Multiple source of the impedance cardiogram based on 3-D finite difference human thorax models. IEEE Trans. Biomed. Eng.42:141-148, 1995.

    Google Scholar 

  27. Watanabe, T., T. Kamide, Y. Torii, and M. Ochiai. A conventional measurement of cardiac output by half-taped impedance cardiography. Jpn. J. Med. Electron. Biol. Eng.19:30-34, 1981.

    Google Scholar 

  28. Woltjer, H. H., B. W. G. J. Arntzen, H. J. Bogaard, and P. M. J. M. de Vries. Optimalisation of the spot electrode array in impedance cardiography. Med. Biol. Eng. Comput.34:84- 87, 1996.

    Google Scholar 

  29. Wtorek, J., and A. Polinski. Examination of impedance cardiography properties-FEM model studies. Biomed. Sci. Instrum.31:77-82, 1995.

    Google Scholar 

  30. Zhang, Y., M. Qu, J. G. Webster, W. J. Tompkins, B. A. Ward, and D. R. Bassett. Cardiac output monitoring by impedance cardiography during treadmill exercise. IEEE Trans. Biomed. Eng.33:1037-1042, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauppinen, P.K., Hyttinen, J.A. & Malmivuo, J.A. Sensitivity Distributions of Impedance Cardiography Using Band and Spot Electrodes Analyzed by a Three-Dimensional Computer Model. Annals of Biomedical Engineering 26, 694–702 (1998). https://doi.org/10.1114/1.44

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.44

Navigation