Skip to main content
Log in

Effects of Droplet Velocity, Diameter, and Film Height on Heat Removal During Cryogen Spray Cooling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cryogen spray cooling (CSC) is an effective method to reduce or eliminate epidermal damage during laser treatment of various dermatoses. This study sought to determine the effects of specific cryogen properties on heat removal. Heat removal was quantified using an algorithm that solved an inverse heat conduction problem from internal temperature measurements made within a skin phantom. A nondimensional parameter, the Weber number, characterized the combined effects of droplet velocity, diameter, and surface tension. CSC experiments with laser irradiation were conducted on ex vivo human skin samples to assess the effect of Weber number on epidermal protection. An empirical relationship between heat removal and the difference in droplet temperature and the substrate, droplet velocity, and diameter was obtained. Histological sections of irradiated ex vivo human skin demonstrated that sprays with higher Weber numbers increased epidermal protection. Results indicate that the cryogen film acts as an impediment to heat transfer between the impinging droplets and the substrate. This study offers the importance of Weber number in heat removal and epidermal protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aguilar, G., B. Majaron, K. Pope, L. O. Svaasand, E. J. Lavernia, and J. S. Nelson. Influence of nozzle-to-skin distance in cryogen spray cooling for dermatologic laser surgery. Lasers Surg. Med. 28:113–120, 2001.

    Article  Google Scholar 

  2. Alexander, D. J., and S. E. Libretto. An overview of the toxicology of HFA-134a (1,1,1,2-tetrafluoroethane). Hum. Exp. Toxicol. 14:715–720, 1995.

    Google Scholar 

  3. Anderson, R. R., and J. A. Parrish. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science 220:524–527, 1983.

    Google Scholar 

  4. Anvari, B., T. E. Milner, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, and J. S. Nelson. Selective cooling of biological tissues: Application for thermally mediated therapeutic procedures. Phys. Med. Biol. 40:541–252, 1995.

    Google Scholar 

  5. Ashinoff, R., and R. G. Geronemus. Treatment of a port-wine stain in a black patient with the pulsed dye laser. J. Dermatol. Surg. Oncol. 18:147–148, 1992.

    Google Scholar 

  6. Beck, J. V., B. Blackwell, and C. R. St. Clair Jr. Inverse Heat Conduction: Ill-Posed Problems.New York: Wiley, 1985.

    Google Scholar 

  7. Blondino, F. E., and P. R. Byron. Surfactant dissolution and water solubilization in chlorine-free liquified gas propellants. Drug Dev. Ind. Pharm. 24:935–945, 1998.

    Google Scholar 

  8. Chae, H. B., J.W. Schmidt, and M. R. Moldover. Surface tension of refrigerants R123 and R134a. J. Chem. Eng. Data 35:6–8, 1990.

    Google Scholar 

  9. Chang, C. J., B. Anvari, and J. S. Nelson. Cryogen spray cooling for spatially selective photocoagulation of hemangiomas: A new methodology with preliminary clinical reports. Plast. Reconstr. Surg. 102:459–463, 1998.

    Google Scholar 

  10. Chang, C. J., K. M. Kelly, M. J. C. van Gemert, and J. S. Nelson. Comparing the effectiveness of 585-nm vs. 595-nm wavelength pulsed dye laser treatment of port wine stains in conjunction with cryogen spray cooling. Lasers Surg. Med. 31:352–358, 2002.

    Article  Google Scholar 

  11. Chaves, H., A. M. Kubitzek, and F. Obermeier. Dynamic process occurring during the spreading of thin liquid films produced by drop impact on hot walls. Int. J. Heat Fluid Flow 20:470–476, 1999.

    Article  Google Scholar 

  12. Chung, J. H., W. S. Koh, and J. I. Youn. Histological responses of port wine stains in brown skin after 578 nm copper vapor laser treatment. Lasers Surg. Med. 18:358–366, 1996.

    Article  Google Scholar 

  13. Dover, J. S., and K. A. Arndt. New approaches to the treatment of vascular lesions. Lasers Surg. Med. 26:158–163, 2000.

    Article  Google Scholar 

  14. Duck, F. A. Physical Properties of Tissue. A Comprehensive Reference Book. London: Academic Press, 1990.

    Google Scholar 

  15. Ghodbane, M., and J. P. Holman. Experimental study of spray cooling with Freon-113. Int. J. Heat Mass Transfer 34:1163–1174, 1991.

    Article  Google Scholar 

  16. Higashi, Y., and T. Shibata. Surface tension for 1,1,1-trifluoroethane (R-143a), 1,1,1,2-tetraflluoroethane (R134a), 1,1-dichloro-2,2,3,3,3-pentafluoropropane (R-225ca), and 1,3-dichloro-1,2,2,3,3-pentafluoropropane (R-225cb). J. Chem. Eng. Data 42:438–440, 1997.

    Article  Google Scholar 

  17. Ho, W. S., H. H. Chan, S.Y. Ying, and P. C. Chan. Laser treatment of congenital facial port-wine stains: Long-term efficacy and complication in Chinese patients. Lasers Surg. Med. 30:44-47, 2002.

    Google Scholar 

  18. Ibreighith, M., M. Fiebig, L. Leipertz, and G. Wu. Thermal diffusivity of the alternative refrigerants R123, R134a, R142b, and R152a in the liquid phase. Fluid Phase Equlib. 80:323–332, 1992.

    Article  Google Scholar 

  19. Kelly, K. M., J. S. Nelson, G. P. Lask, R. G. Geronemus, and L. J. Bernstein. Cryogen spray cooling in combination with nonablative laser treatment of facial rhytides. Arch. Dermatol. 135:691–694, 1999.

    Article  Google Scholar 

  20. Lask, G., M. Elman, M. Slatkine, A. Waldman, and Z. Rozenberg. Laser-assisted hair removal by selective photothermolysis. Dermatol. Surg. 23:737–739, 1997.

    Article  Google Scholar 

  21. McLinden, M. O., J. S. Gallagher, L. A. Weber, G. Morrison, D. Ward, A. R. H. Goodwin, M. R. Moldover, J. W. Schmidt, H. B. Chae, T. J. Bruno, J. F. Ely, and M. L. Huber. Measurement and formulation of the thermodynamic properties of refrigerants134a (1,1,1,2-tetrafluoroethane) and 123 (1,1-dichloro-2,2,2-trifluoroethane). ASHRAE Trans. 2:263–283, 1989.

    Google Scholar 

  22. Miller, C. A., and P. Neogi. Interfacial Phenomena. New York. Marcel Dekker, 1985.

    Google Scholar 

  23. Nelson, J. S., and S. Kimel. Safety of cryogen spray cooling during pulsed laser treatment of selected dermatoses. Lasers Surg. Med. 26:2–3, 2000.

    Article  Google Scholar 

  24. Nelson, J. S., T. E. Milner, B. Anvari, B. S. Tanenbaum, S. Kimel, L. O. Svaasand, and S. L. Jacques. Dynamic epidermal cooling during pulsed laser treatment of port-wine stain. A new methodology with preliminary clinical evaluation. Arch. Dermatol. 131:695–700, 1995.

    Article  Google Scholar 

  25. Nelson, J. S., T. E. Milner, B. Anvari, B. S. Tanenbaum, L. O. Svaasand, and S. Kimel. Dynamic epidermal cooling in conjunction with laser-induced photothermolysis of port wine stain blood vessels. Lasers Surg. Med. 19:224–229, 1996.

    Article  Google Scholar 

  26. Niemz, M. H. Laser-Tissue Interactions. Berlin: Springer-Verlag, 1996.

    Google Scholar 

  27. Pikkula, B. M., J. H. Torres, J.W. Tunnell, and B. Anvari. Cryogen spray cooling: Effects of droplet size and spray density on heat removal. Lasers Surg. Med. 28:103–112, 2001.

    Article  Google Scholar 

  28. Pikkula, B. M., J. W. Tunnell, and B. Anvari. Methodology for characterizing heat removal mechanism in human skin during cryogen spray cooling. Ann. Biomed. Eng. 31:493–504, 2003.

    Article  Google Scholar 

  29. Rayleigh, O. M. On the theory of the capillary tube. Proc. R. Soc. Lond. Ser. A 92:184–195, 1915.

    Google Scholar 

  30. Ross, E. V., F. P. Sajben, J. Hsia, D. Barnette, C. H. Hiller, and J. R. McKinlay. Nonablative skin remodeling: Selective dermal heating with a mid-infrared laser and contact cooling combination. Lasers Surg. Med. 26:186–195, 2000.

    Article  Google Scholar 

  31. Stolz, G., Jr. Numerical solutions to an inverse problem of heat conduction for simple shapes. J. Heat Transfer 82:20–26, 1960.

    Google Scholar 

  32. Taler, J. Theory of transient experimental techniques for surface heat transfer. Int. J. Heat Mass Transfer 39:3733–3748, 1996.

    Article  Google Scholar 

  33. Torres, J. H., B. Anvari, S. B. Tanenbaum, T. E. Milner, J. C. Yu, and J. S. Nelson. Internal temperature measurements in response to cryogen spray cooling of skin. SPIE Proc. 3590:11–19, 1999. 1140 PIKKULA et al.

    Article  Google Scholar 

  34. Torres, J. H., J. S. Nelson, B. S. Tanenbaum, T. E. Milner, D.M. Goodman, and B. Anvari. Estimation of internal skin temperatures in response to cryogen spray cooling: Implications for laser therapy of port wine stains. IEEE J. Special Topics Quant. Elect. 5:1058–1066, 1999.

    Article  Google Scholar 

  35. Torres, J. H., J. W. Tunnell, B. M. Pikkula, and B. Anvari. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application. Lasers Surg. Med. 28:477–486, 2001.

    Article  Google Scholar 

  36. Tunnell, J.W.,D. Chang, C. Johnston, J. H. Torres, C.W. Patrick, M. J. Miller, S. L. Thomsen, and B. Anvari. In-vivostudy of epidermal protection by cryogen spray cooling during pulsed laser irradiation at high radiant exposures. SPIE Proc. 4609:67–74, 2002.

    Article  Google Scholar 

  37. Tunnell, J.W., J. S. Nelson, J. H. Torres, and B. Anvari. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: An ex vivostudy. Lasers Surg. Med. 27:373–383, 2000.

    Article  Google Scholar 

  38. Tunnell, J. W., J. H. Torres, and B. Anvari. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling. Ann. Biomed. Eng. 30:19–33, 2002.

    Article  Google Scholar 

  39. Valeria, B. C., C. C. Dierickx, W. A. Farinelli, D. L. Tai-Yuan, M. Woraphong, and R. R. Anderson. Ruby laser hair removal: Evaluation of long-term efficacy and side effects. Lasers Surg. Med. 26:177–185, 2000.

    Article  Google Scholar 

  40. Verkruysse,W.,B. Majaron, G. Aguilar, L.O. Svaasand, and J. S. Nelson. Dynamics of cryogen deposition relative to heat extraction rate during cryogen spray cooling. SPIE Proc. 3907:37–48, 2000.

    Google Scholar 

  41. Zenzie, H. H., G. B. Altshuler, M. Z. Smirnov, and R. R. Anderson. Evaluation of cooling methods for laser dermatology. Lasers Surg. Med. 26:130–144, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikkula, B.M., Tunnell, J.W., Chang, D.W. et al. Effects of Droplet Velocity, Diameter, and Film Height on Heat Removal During Cryogen Spray Cooling. Annals of Biomedical Engineering 32, 1133–1142 (2004). https://doi.org/10.1114/B:ABME.0000036649.80421.60

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036649.80421.60

Navigation