Skip to main content
Log in

Pseudogene PTENP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Increasing evidence has shown that pseudogenes can widely regulate gene expression. However, little is known about the specific role of PTENP1 and miR-499-5p in insulin resistance. The relative transcription level of PTENP1 was examined in db/db mice and high fat diet (HFD)-fed mice by real-time PCR. To explore the effect of PTENP1 on insulin resistance, adenovirus overexpressing or inhibiting vectors were injected through the tail vein. Bioinformatics predictions and a luciferase reporter assay were used to explore the interaction between PTENP1 and miR-499-5p. The relative transcription level of PTENP1 was largely enhanced in db/db mice and HFD-fed mice. Furthermore, the overexpression of PTENP1 resulted in impaired Akt/GSK activation as well as glycogen synthesis, while PTENP1 inhibition led to the improved activation of Akt/GSK and enhanced glycogen contents. More importantly, PTENP1 could directly bind miR-499-5p, thereby becoming a sink for miR-499-5p. PTENP1 overexpression results in the impairment of the insulin-signaling pathway and may function as a competing endogenous RNA for miR-499-5p, thereby contributing to insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ceRNA:

competing endogenous RNA

db/db mouse:

mouse with db/db mutation, a model for diabetic dyslipidemia

GFP:

green fluorescent protein

GTT:

glucose tolerance test

HFD:

high fat diet

ITT:

insulin tolerance test

lncRNAs:

long noncoding RNAs

miRNA (miR):

microRNAs

PTENP1:

phosphatase and tensin homolog pseudogene 1

3′-UTR:

3′-untranslated region

WT:

wild-type

References

  1. Frampton, A. E., Krell, J., Jamieson, N. B., Gall, T. M., Giovannetti, E., Funel, N., Mato Prado, M., Krell, D., Habib, N. A., Castellano, L., Jiao, L. R., and Stebbing, J. (2015) MicroRNAs with prognostic significance in pancreatic ductal adenocarcinoma: a meta-analysis, Eur. J. Cancer, 51, 1389–1404.

    Article  CAS  PubMed  Google Scholar 

  2. Zaleska, K. (2015) miRNA–therapeutic tool in breast cancer? Where are we now? Rep. Pract. Oncol. Radiother., 20, 79–86.

    Article  PubMed  Google Scholar 

  3. Mahdavinezhad, A., Mousavi-Bahar, S. H., Poorolajal, J., Yadegarazari, R., Jafari, M., Shabab, N., and Saidijam, M. (2015) Evaluation of miR-141, miR-200c, miR-30b expression and clinicopathological features of bladder cancer, Int. J. Mol. Cell. Med., 4, 32–39.

    PubMed  PubMed Central  Google Scholar 

  4. Haldrup, C., Kosaka, N., Ochiya, T., Borre, M., Hoyer, S., Orntoft, T. F., and Sorensen, K. D. (2014) Profiling of circulating microRNAs for prostate cancer biomarker discovery, Drug. Deliv. Transl. Res., 4, 19–30.

    Article  CAS  PubMed  Google Scholar 

  5. Prokopi, M., Kousparou, C. A., and Epenetos, A. A. (2014) The secret role of microRNAs in cancer stem cell development and potential therapy: a Notch-pathway approach, Front. Oncol., 4, 389.

    PubMed  Google Scholar 

  6. Wilusz, J. E., Sunwoo, H., and Spector, D. L. (2009) Long noncoding RNAs: functional surprises from the RNA world, Genes Dev., 23, 1494–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mercer, T. R., Dinger, M. E., and Mattick, J. S. (2009) Long non-coding RNAs: insights into functions, Nat. Rev. Genet., 10, 155–159.

    Article  CAS  PubMed  Google Scholar 

  8. Poliseno, L., and Pandolfi, P. P. (2015) PTEN ceRNA networks in human cancer, Methods, 77-78, 41–50.

    Article  CAS  PubMed  Google Scholar 

  9. Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, P. P. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA, Cell, 147, 358–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., Wu, M., Xiong, J., Guo, X., and Liu, H. (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal, Dev. Cell, 25, 69–80.

    Article  CAS  PubMed  Google Scholar 

  12. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology, Nature, 465, 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fujii, G. H., Morimoto, A. M., Berson, A. E., and Bolen, J. B. (1999) Transcriptional analysis of the PTEN/MMAC1 pseudogene, psiPTEN, Oncogene, 18, 1765–1769.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, L., Zhang, N., Pan, H. P., Wang, Z., and Cao, Z. Y. (2015) MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN, Cell. Physiol. Biochem., 36, 2357–2365.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, C., Srinivasan, L., Calado, D. P., Patterson, H. C., Zhang, B., Wang, J., Henderson, J. M., Kutok, J. L., and Rajewsky, K. (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes, Nat. Immunol., 9, 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrison, P. M., Zheng, D., Zhang, Z., Carriero, N., and Gerstein, M. (2005) Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability, Nucleic Acids Res., 33, 2374–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Errico, I., Gadaleta, G., and Saccone, C. (2004) Pseudogenes in metazoa: origin and features, Brief Funct. Genom. Proteom., 3, 157–167.

    Article  Google Scholar 

  18. Pink, R. C., Wicks, K., Caley, D. P., Punch, E. K., Jacobs, L., and Carter, D. R. (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA, 17, 792–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seitz, H. (2009) Redefining microRNA targets, Curr. Biol., 19, 870–873.

    Article  CAS  PubMed  Google Scholar 

  20. Gu, S., Jin, L., Zhang, F., Sarnow, P., and Kay, M. A. (2009) Biological basis for restriction of microRNA targets to the 3'-untranslated region in mammalian mRNAs, Nat. Struct. Mol. Biol., 16, 144–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Published in Russian in Biokhimiya, 2016, Vol. 81, No. 7, pp. 971-981.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM16-029, April 24, 2016.

These authors contributed equally to this work.

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, N., Wang, Z. et al. Pseudogene PTENP1 functions as a competing endogenous RNA (ceRNA) to regulate PTEN expression by sponging miR-499-5p. Biochemistry Moscow 81, 739–747 (2016). https://doi.org/10.1134/S0006297916070105

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916070105

Keywords

Navigation