Skip to main content
Log in

The Myocardial Infarction Associated Variant in the MIR196A2 Gene and Presumable Signaling Pathways to Involve miR-196a2 in the Pathological Phenotype

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

The heritable component of susceptibility to myocardial infraction (MI) remains unexplained, possibly due to the minor effects of genes, which are not obviously associated with the disease. These genes may be integrated in miRNA regulated networks associated with myocardial infarction. A systematic review of the literature led us to selecting rs2910164 (MIR146A), rs11614913 (MIR196A2), and rs3746444 (MIR499А) variants to study the association with the MI phenotype. In ethnic Russians, variant rs11614913*C (MIR196A2) was found to be associated with the risk of myocardial infraction (p = 0.023, OR = 1.74) for the first time; this association was validated in an independent cohort. The gene-gene interaction network for experimentally validated miR-196a2 target genes was built and analyzed. One of its four topological clusters contained the majority of miR-196a2 target genes associated with atherosclerosis, coronary artery disease or myocardial infarction and was enriched with the genes regulating the TGFβ and class I MHC signaling pathways, platelet activation/aggregation, and the cell cycle control. This analysis points towards the role of miR-196a2 in the pathological coronary phenotypes and opens up an avenue for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Roberts R. 2014. Genetics of coronary artery disease. Circ. Res. 114, 1890–1903.

    Article  CAS  PubMed  Google Scholar 

  2. Wu M.-Y., Li C.-J., Hou M.-F., Chu P.-Y. 2017. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int. J. Mol. Sci. 18, E2034.

    Article  CAS  PubMed  Google Scholar 

  3. Girelli D., Martinelli N., Peyvandi F., Olivieri O. 2009. Genetic architecture of coronary artery disease in the genome-wide era: Implications for the emerging “golden dozen” loci. Semin. Thromb. Hemost. 35, 671–682.

    Article  CAS  PubMed  Google Scholar 

  4. Hartiala J., Schwartzman W.S., Gabbay J., Ghazalpour A., Bennett B.J., Allayee H. 2017. The genetic architecture of coronary artery disease: Current knowledge and future opportunities. Curr. Atheroscler. Rep. 19, 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boyle E.A., Li Y.I., Pritchard J.K. 2017. An expanded view of complex traits: From polygenic to omnigenic. Cell. 169, 1177–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ghiassian S.D., Menche J., Chasman D.I., Giulianini F., Wang R., Ricchiuto P., Aikawa M., Iwata H., Müller C., Zeller T., Sharma A., Wild P., Lackner K., Singh S., Ridker P.M., et al. 2016. Endophenotype network models: Common core of complex diseases. Sci. Rep. 6, 27414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eulalio A., Mano M. 2015. MicroRNA screening and the quest for biologically relevant targets. J. Biomol. Screen. 20, 1003–1017.

    Article  CAS  PubMed  Google Scholar 

  8. Peláez N., Carthew R.W. 2012. Biological robustness and the role of microRNAs: A network perspective. Curr. Top. Dev. Biol. 99, 237–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Backes C., Khaleeq Q.T., Meese E., Keller A. 2016. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 44, W110–W116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bradshaw G., Sutherland H.G., Haupt L.M., Griffiths L.R. 2016. Dysregulated microRNA expression profiles and potential cellular, circulating and polymorphic biomarkers in non-Hodgkin lymphoma. Genes. 7, 130.

    Article  CAS  PubMed Central  Google Scholar 

  11. Moszyńska A., Gebert M., Collawn J.F., Bartoszewski R. 2017. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 7, 170019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hagberg A.A., Schult D.A. Swart P.J. 2008. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy 2008). Pasadena, CA, p. 11.

  13. Chou C.-H., Chang N.-W., Shrestha S., Hsu S.-D., Lin Y.-L., Lee W.-H., Yang C.-D., Hong H.-C., Wei T.-Y., Tu S.-J., Tsai T.-R., Ho S.-Y., Jian T.-Y., Wu H.-Y., Chen P.-R., et al. 2016. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44, D239–D247.

    Article  CAS  PubMed  Google Scholar 

  14. Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M., Santos A., Doncheva N.T., Roth A., Bork P., Jensen L.J., von Mering C. 2017. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368.

    Article  CAS  Google Scholar 

  15. Piñero J., Bravo À., Queralt-Rosinach N., Gutiérrez-Sacristán A., Deu-Pons J., Centeno E., García-García J., Sanz F., Furlong L.I. 2017. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839.

    Article  CAS  PubMed  Google Scholar 

  16. Piñero J., Queralt-Rosinach N., Bravo À., Deu-Pons J., Bauer-Mehren A., Baron M., Sanz F., Furlong L.I. 2015. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015, bav028. doi 10.1093/database/bav028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brandes U. 2001. A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177.

    Article  Google Scholar 

  18. Liu X., You L., Zhou R., Zhang J. 2017. Significant association between functional microRNA polymorphisms and coronary heart disease susceptibility: A comprehensive meta-analysis involving 16484 subjects. Oncotarget. 8, 5692.

    PubMed  Google Scholar 

  19. Chen C., Hong H., Chen L., Shi X., Chen Y., Weng Q. 2014. Association of microRNA polymorphisms with the risk of myocardial infarction in a Chinese population. Tohoku J. Exp. Med. 233, 89–94.

    Article  CAS  PubMed  Google Scholar 

  20. Srivastava K., Tyagi K. 2018. Single nucleotide polymorphisms of microRNA in cardiovascular diseases. Clin. Chim. Acta. 478, 101–110.

    Article  CAS  PubMed  Google Scholar 

  21. Xu J., Hu Z., Xu Z., Gu H., Yi L., Cao H., Chen J., Tian T., Liang J., Lin Y. 2009. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30, 1231–1236.

    Article  CAS  PubMed  Google Scholar 

  22. Sung J.-H., Kim S.-H., Yang W.-I., Kim W.-J., Moon J.-Y., Kim I.J., Cha D.-H., Cho S.-Y., Kim J.O., Kim K.A. 2016. miRNA polymorphisms (miR-146a, miR-149, miR-196a2 and miR-499) are associated with the risk of coronary artery disease. Mol. Med. Rep. 14, 2328–2342.

    Article  CAS  PubMed  Google Scholar 

  23. Buraczynska M., Zukowski P., Wacinski P., Ksiazek K., Zaluska W. 2014. Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J. Diabetes Complications. 28, 617–620.

    Article  PubMed  Google Scholar 

  24. Xie X., Shi X., Xun X., Rao L. 2017. Association between microRNA polymorphisms and coronary heart disease: A meta-analysis. Herz. 42, 593–603.

    Article  CAS  PubMed  Google Scholar 

  25. Hoffman A.E., Zheng T., Yi C., Leaderer D., Weidhaas J., Slack F., Zhang Y., Paranjape T., Zhu Y. 2009. MicroRNA miR-196a-2 and breast cancer: A genetic and epigenetic association study and functional analysis. Cancer Res. 69, 5970–5977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Redondo S., Navarro-Dorado J., Ramajo M., Medina Ú., Tejerina T. 2012. The complex regulation of TGF-β in cardiovascular disease. Vasc. Health Risk Manag. 8, 533.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Estevez B., Du X. 2017. New concepts and mechanisms of platelet activation signaling. Physiology. 32, 162–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S., Fischer P.M. 2008. Cyclin-dependent kinase 9: A key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci. 29, 302–313.

    Article  CAS  PubMed  Google Scholar 

  29. Porto I., Leone A.M., Crea F., Andreotti F. 2005. Inflammation, genetics, and ischemic heart disease: Focus on the major histocompatibility complex (MHC) genes. Cytokine. 29, 187–196.

    Article  CAS  PubMed  Google Scholar 

  30. Friese M.A., Jones E.Y., Fugger L. 2005. MHC II molecules in inflammatory diseases: Interplay of qualities and quantities. Trends Immunol. 26, 559–561.

    Article  CAS  PubMed  Google Scholar 

  31. Davies R.W., Wells G.A., Stewart A.F., Erdmann J., Shah S.H., Ferguson J.F., Hall A.S., Anand S.S., Burnett M.S., Epstein S.E. 2012. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex: Clinical perspective. Circ. Cardiovasc. Genet. 5, 217–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palikhe A., Sinisalo J., Seppänen M., Valtonen V., Nieminen M.S., Lokki M.L. 2007. Human MHC region harbors both susceptibility and protective haplotypes for coronary artery disease. HLA. 69, 47–55.

    CAS  Google Scholar 

  33. Huang L., Marvin J.M., Tatsis N., Eisenlohr L.C. 2011. Cutting edge: Selective role of ubiquitin in MHC class I antigen presentation. J. Immunol. 186, 1904–1908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garrido C., Paco L., Romero I., Berruguilla E., Stefansky J., Collado A., Algarra I., Garrido F., Garcia-Lora A.M. 2012. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis. 33, 687–693.

    Article  CAS  PubMed  Google Scholar 

  35. Aoki C.A., Borchers A.T., Li M., Flavell R.A., Bowlus C.L., Ansari A.A., Gershwin M.E. 2005. Transforming growth factor β (TGF-β) and autoimmunity. Autoimmun. Rev. 4, 450–459.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Osmak.

Additional information

Translated by M. Novikova

Abbreviations: CI, confident interval; CAD, coronary artery disease; MI, myocardial infarction; OD, odds ratio; CVD, cardiovascular disease; MAF, minor allele frequency; MHC, major histocompatibility complex; SNP, single nucleotide polymorphism; TGFβ, transforming growth factor β.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmak, G.J., Matveeva, N.A., Titov, B.V. et al. The Myocardial Infarction Associated Variant in the MIR196A2 Gene and Presumable Signaling Pathways to Involve miR-196a2 in the Pathological Phenotype. Mol Biol 52, 872–877 (2018). https://doi.org/10.1134/S0026893318060146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893318060146

Keywords:

Navigation