Skip to main content
Log in

Behavior of dominant and non dominant arms during ballistic protractive target-directed movements

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the asymmetry of dominant and non-dominant arms regarding reaction time (RT), velocity, force and power generated during ballistic target-directed movements. Fifty six, right-handed young males performed protractile movements with both arms separately by pushing a joystick towards a target-line as quickly and as accurately as possible. Participants performed 21 repetitions with each hand. The temporal, spatial, kinetic and kinematic parameters were computed. All movements were grouped regarding their accuracy (when joystick fell short, stopped precisely or overreached the target). Each group of movements was analyzed separately and the data obtained was compared across groups.

The results showed that although the left arm was less accurate than the right one, it reached the target significantly faster, developing greater average force and power. The forces of acceleration and deceleration of the left arm were greater too. We did not observe a significant lateral difference in RT in situations when the arm fell short of the target, or stopped precisely on the target. It was only when the target was overreached that the left arm displayed a significantly greater RT than the right one. We explain the results from the asymmetry of motor behavior in favor of the influence of both hemispheres in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flowers, K., Handedness and Controlled Movement, Brit. J. Psychology, 1975, vol. 66, no. 1, p. 39.

    CAS  Google Scholar 

  2. Elliott, D., Heath, M., Binsted, G., et al., Goal-Directed Aiming: Correcting a Force-Specification Error with the Right and Left Hands, J. Motor Behavior, 1999, vol. 31, no. 4, pp. 309.

    Google Scholar 

  3. Carson, R.G., Goodman, D., Chua, R., and Elliott, D., Asymmetries in the Regulation of Visually Guided Aiming, J. Motor Behavior, 1993, vol. 25, no. 1, p. 21.

    CAS  Google Scholar 

  4. Roy, E.A., Kalbeisch, L., and Elliott, D., Kinematic Analyses of Manual Asymmetries in Visual Aiming Movements, Brain Cognition, 1994, vol. 24, no. 2, pp. 289.

    Article  CAS  Google Scholar 

  5. Elliott, D., Weeks, D.J., and Jones, R., Lateral Asymmetries in Finger-Tapping by Adolescents and Young Adults with Down Syndrome, Am. J. Mental Deficiency, 1986, vol. 90, no. 4, p. 472.

    CAS  Google Scholar 

  6. Fisk, J.D. and Goodale, M.A., The Effects of Unilateral Brain Damage on Visually Guided Reaching: Hemispheric Differences in the Nature of the Deficit, Exp. Brain Res., 1988, vol. 72, no. 2, pp. 425.

    Article  PubMed  CAS  Google Scholar 

  7. Haaland, K.Y. and Harrington, D., The Role of the Hemispheres in Closed Loop Movements, Brain Cognition, 1989a, vol. 9, no. 2, p. 158.

    Article  CAS  Google Scholar 

  8. Haaland, K.Y. and Harrington, D.L., Hemispheric Control of the Initial and Corrective Components of Aiming Movements, Neuropsychologia, 1989b, vol. 27, no. 7, p. 961.

    Article  PubMed  CAS  Google Scholar 

  9. Winstein, C.J. and Pohl, P.S., Effects of Unilateral Brain Damage on the Control of Goal-Directed Hand Movements, Exp. Brain Res., 1995, vol. 105, no. 1, p. 163.

    Article  PubMed  CAS  Google Scholar 

  10. Haaland, K.Y., Harrington, D.L., and Knight, R.T., Spatial Deficits in Ideomotor Limb Apraxia. A Kinematic Analysis of Aiming Movements, Brain, 1999, vol. 122, no. 6, p. 1169.

    Article  PubMed  Google Scholar 

  11. Pohl, P.S., Luchies, C.W., Stoker-Yates, J., and Duncan, P.W., Upper Extremity Control in Adults Post Stroke with Mild Residual Impairment, Neurorehabilitation Neural Repair, 2000, vol. 14, no. 1, p. 33.

    Article  PubMed  CAS  Google Scholar 

  12. Haaland, K.Y., Prestopnik, J.L., Knight, R.T., and Lee, R.R., Hemispheric Asymmetries for Kinematic and Positional Aspects of Reaching, Brain, 2004, vol. 127,part 5, p. 1145.

    Article  PubMed  Google Scholar 

  13. Van Thiel, E., Meulenbroek, R.G., Smeets, J.B., and Hulstijn, W., Fast Adjustments of Ongoing Movements in Hemiparetic Cerebral Palsy, Neuropsychologia, 2002, vol. 40, no. 1, p. 16.

    Article  PubMed  Google Scholar 

  14. Sainburg, R.L., Evidence for a Dynamic-Dominance Hypothesis of Handedness, Exp. Brain Res., 2002, vol. 142, no. 2, p. 241.

    Article  PubMed  Google Scholar 

  15. Sainburg, R.L. and Kalakanis, D., Differences in Control of Limb Dynamics During Dominant and Nondominant Arm Reaching, Neurophysiology, 2000, vol. 83, no. 5, p. 2661.

    PubMed  CAS  Google Scholar 

  16. Oldfield, R.C., The Assessment and Analysis of Handedness: the Edinburgh Inventory, Neuropsychologia, 1971, vol. 9, no. 1, p. 97.

    Article  PubMed  CAS  Google Scholar 

  17. Norton, K.I., Whittingham, N.O., Carter, J.E.L., et al., Measurement Techniques in Antropometry, in Anthropometrica, Norton, K. and Odds, T., Eds., Sydney: UNSW Press, 1996.

    Google Scholar 

  18. Zatsiorsky, V. and Seluyanov, V., The Mass and Inertia Characteristics of the Main Segments of the Human Body, in Biomechanics, vol. VIII-B, Matsui, H. and Kobayashi, K., Ed., Champaign: Human Kinetics, 1983, p. 1152.

    Google Scholar 

  19. Hall, S.J., Basic Biomechanics (3rd ed.), New York: WCB McGraw-Hill, 1999.

    Google Scholar 

  20. Green, M.W., Elliman, N.A., and Kretsch, M.J., Weight Loss Strategies, Stress, and Cognitive Function: Supervised Versus Unsupervised Dieting, Psychoneuroendocrinology, 2005, vol. 30, no. 9, p. 908.

    Article  PubMed  Google Scholar 

  21. Hummel, F.C., Voller, B., Celnik, P., et al., Effects of Brain Polarization on Reaction Times and Pinch Force in Chronic Stroke, BMC Neurosci., 2006, vol. 7, p. 73.

    Article  PubMed  Google Scholar 

  22. Flash, T. and Hogan, N., The Coordination of Arm Movements: an Experimentally Confirmed Mathematical Model, J. Neurosci., 1985, vol. 5, no. 7, p. 1688.

    PubMed  CAS  Google Scholar 

  23. Schmidt, R.A. and Lee, T., Motor Control and Learning. A behavioural Emphasis, Human Kinetics, Champaign, Il., 1999.

  24. Shadmehr, R. and Wise, S.P., The Computational Neurobiology of Reaching and Pointing. A Foundation for Motor Learning, NY: MIT press, 2005.

    Google Scholar 

  25. Todor, J.I. and Doane, T., Handedness and Hemispheric Asymmetry in the Control of Movements, J. Motor Behavior, 1978, vol. 10, no. 4, p. 295.

    CAS  Google Scholar 

  26. Todor, J.I. and Cisneros, J., Accommodation to Increased Accuracy Demands by the Right and Left Hands, J. Motor Behavior, 1985, vol. 17, no. 3, p. 355.

    CAS  Google Scholar 

  27. Brouwer, B., Sale, M.V., and Nordstrom, M.A., Asymmetry of Motor Cortex Excitability During a Simple Motor Task: Relationships with Handedness and Manual Performance, Exp. Brain Res., 2001, vol. 138, no. 4, p. 467.

    Article  PubMed  CAS  Google Scholar 

  28. Ghacibeh, G.A., Mirpuri, R., Drago, V., et al., Ipsilateral Motor Activation During Unimanual and Bimanual Motor Tasks, Clin. Neurophysiology, 2007, vol. 118, no. 2, p. 325.

    Article  Google Scholar 

  29. Doane, T. and Todor, J.I., Motor Ability as a Function of Handedness, in Psychology of Motor Behavior and Sport, Cristina, D.M.L.R.W., Ed., Champaign, I. L.: Human Kinetics, 1978, p. 264.

    Google Scholar 

  30. Woodworth, R.S., The Accuracy of Voluntary Movement, Psychological Review, 1899, vol. 3, p. 1.

    Google Scholar 

  31. Roy, E.A. and Elliott, D., Manual Asymmetries in Visually Directed Aiming, Canad. J. Psychology, 1986, vol. 40, no. 2, p. 109.

    CAS  Google Scholar 

  32. Roy, E.A. and Elliott, D., Manual Asymmetries in Aimed Movements, Quarterly J. Exp. Psychology, Ser. A, 1989, vol. 41, p. 501.

    Google Scholar 

  33. Roy, E.A., Manual Performance Asymmetries and Motor Control Processes: Subject-Generated Changes in Response Parameters, Human Movement Sci., 1983, vol. 2, p. 271.

    Article  Google Scholar 

  34. Geschwind, N., Disconnection Syndromes in Animals and Man, Brain, 1965, vol. 88, p. 237.

    Article  PubMed  CAS  Google Scholar 

  35. Haaland, K.Y. and Harrington, D.L., Hemispheric Asymmetry of Movement, Current Opinion Neurobiology, 1996, vol. 6, no. 6, p. 796.

    Article  CAS  Google Scholar 

  36. Haaland, K.Y., Harrington, D.L., and Knight, R.T., Neural Representations of Skilled Movement, Brain Cognition, 2000, vol. 123, no. 11, p. 2306.

    Google Scholar 

  37. Kim, S., Ashe, J., Hendrich, K., et al., Functional Magnetic Resonance Imaging of Motor Cortex: Hemispheric Asymmetry and Handedness, Science, 1993, vol. 261, no. 5121, p. 615.

    Article  PubMed  CAS  Google Scholar 

  38. Schluter, N.D., Krams, M., Rushworth, M.F., and Passingham, R.E., Cerebral Dominance for Action in the Human Brain: the Selection of Actions, Neuropsychologia, 2001, vol. 39, no. 2, p. 105.

    Article  PubMed  CAS  Google Scholar 

  39. Schluter, N.D., Rushworth, M.F., Passingham, R.E., Mills, K.R., Temporary Interference in Human Tateral Premotor Cortex Suggests Dominance for the selection of Movements. A Study Using Transcranial Magnetic Stimulation, Brain, 1998, vol. 121, no. 5, p. 785.

    Article  PubMed  Google Scholar 

  40. Haaland, K.Y. and Flaherty, D., The Different Types of Limb Apraxia Errors Made by Patients with Left Versus Right Hemisphere Damage, Brain, 1984, vol. 3, no. 4, p. 370.

    Article  CAS  Google Scholar 

  41. Iacoboni, M., Woods, R.P., Brass, M., et al., Cortical Mechanisms of Human Imitation, Science, 1999, vol. 286, no. 5449, p. 2526.

    Article  PubMed  CAS  Google Scholar 

  42. Roy, E.A., Heath, M., Westwood, D., et al., Task Demands and Limb Apraxia in Stroke, Brain Cognition, 2000, vol. 44, no. 2, p. 253.

    Article  CAS  Google Scholar 

  43. Elliott, D., Chua, R., and Pollock, B.J., The Influence of Intermittent Vision on Manual Aiming, Acta Psychologica, 1994, vol. 85, no. 1, p. 1.

    Article  PubMed  CAS  Google Scholar 

  44. Steingruber, H.S., Handedness as a Function of Test Complexity, Perceptual Motor Skills, 1975, vol. 40, p. 263.

    Google Scholar 

  45. Haaland, K.Y. and Harrington, D.L., Limb-Sequencing Deficits after Left but Not Right Hemisphere Damage, Brain Cognition, 1994, vol. 24, no. 1, p. 104.

    Article  CAS  Google Scholar 

  46. Honda, H., Rightward Superiority of Eye Movements in a Bimanual Aiming Task, Quarterly J. Exp. Psychology, Ser. A, 1982, vol. 34, no. 4, p. 499.

    CAS  Google Scholar 

  47. Honda, H., Functional Between-Hand Differences and Outflow Eye Position Information, Quarterly J. Exp. Psychology, Ser. A, 1984, vol. 36, no. 1, p. 75.

    CAS  Google Scholar 

  48. Proteau, L. and Isabelle, G., 2002, On the Role of Visual Afferent Information for the Control of Aiming Movements Toward Targets of Different Sizes, J. Motor Behavior, 2002, vol. 34, no. 4, p. 367.

    Article  Google Scholar 

  49. Bagesteiro, L.B. and Sainburg, R.L., Handedness: Dominant Arm Advantages in Control of Limb Dynamics, J. Neurophysiology, 2002, vol. 88, no. 5, p. 2408.

    Article  Google Scholar 

  50. Sainburg, R.L. and Wang, J., Interlimb Transfer of Visuomotor Rotations: Independence of Direction and Final Position Information, Exp. Brain Res., 2002, vol. 145, no. 4, p. 437.

    Article  PubMed  Google Scholar 

  51. Elliott, D., Lyons, J., Chua, R., et al., The Influence of Target Perturbation on Manual Aiming Asymmetries in Right-Handers, Cortex, 1995, vol. 31, no. 4, p. 685.

    PubMed  CAS  Google Scholar 

  52. Mieschke, P.E., Elliott, D., Helsen, W.F., et al., Manual Asymmetries in the Preparation and Control of Goal-Directed Movements, Brain Cognition, 2001, vol. 45, no. 1, p. 129.

    Article  CAS  Google Scholar 

  53. Goble, D.J., Lewis, C.A., and Brown, S.H., Uper Limb Asymmetries in the Utilization of Proprioceptive Feedback, Exp. Brain Res., 2006, vol. 168, nos. 1–2, p. 307.

    Article  PubMed  Google Scholar 

  54. Jeannerod, M., The Neural and Behavioural Organization of Goal Directed Movements, Oxford: Clarendon Press, 1988, p. 164.

    Google Scholar 

  55. Carmon, A., Sequenced Motor Performance in Patients with Unilateral Cerebral Lesions, Neuropsychologia, 1971, vol. 9, no. 4, p. 445.

    Article  PubMed  CAS  Google Scholar 

  56. Gottlieb, G.L., The Generation of the Efferent Command and the Importance of Joint Compliance in Fast Elbow Movements, Exp. Brain Res., 1995, vol. 97, no. 3, p. 545.

    Google Scholar 

  57. Shadmehr, R. and Mussa-Ivaldi, F.A., Adaptive Representation of Dynamics during Learning of a Motor Task, Neuroscience, 1994, vol. 14, no. 5, p. 3208.

    PubMed  CAS  Google Scholar 

  58. Gribble, P.L. and Ostry, D.J., Compensation for Interaction Torques during Single-and Multi-Joint Limb Movement, Neurophysiology, 1999, vol. 82, no. 5, p. 2310.

    PubMed  CAS  Google Scholar 

  59. Hollerbach, J.M. and Flash, T., Dynamic Interactions between Limb Segments during Planar Arm Movement, Biol. Cybernetics, 1982, vol. 44, no. 1, p. 67.

    Article  CAS  Google Scholar 

  60. Zajac, F.E. and Gordon, M.E., Determining Muscle’s Force and Action in Multi-Articular Movement, Exercise Sport Sci. Rev., 1989, vol. 17, p. 187.

    CAS  Google Scholar 

  61. Evarts, E.V., Relation of Pyramidal Tract Activity to Force Exerted during Voluntary Movement, Neurophysiology, 1968, vol. 31, no. 1, p. 14.

    PubMed  CAS  Google Scholar 

  62. Evarts, E.V., Activity of Pyramidal Tract Neurons during Postural Fixation, Neurophysiology, 1969, vol. 32, no. 3, p. 375.

    PubMed  CAS  Google Scholar 

  63. Sergio, L.E., Hamel-Pâquet, C., and Kalaska, J.F., Motor Cortex Neural Correlates of Output Kinematics and Kinetics during Isometric-Force and Arm-Reaching Tasks, Neurophysiology, 2005, vol. 94, no. 4, p. 2353.

    Article  PubMed  Google Scholar 

  64. Gandolfo, F., Mussa-Ivaldi, F.A., and Bizzi, E., Motor Learning by Field Approximation, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, no. 9, p. 3843.

    Article  PubMed  CAS  Google Scholar 

  65. Goodbody, S.J. and Wolpert, D.M., Temporal and Amplitude Generalization in Motor Learning, Neurophysiology, 1998, vol. 79, no. 4, p. 1825.

    PubMed  CAS  Google Scholar 

  66. Lackner, J.R. and Dizio, P., Rapid Adaptation to Coriolis Force Perturbations of Arm Trajectory, Neurophysiology, 1994, vol. 72, no. 1, p. 299.

    PubMed  CAS  Google Scholar 

  67. Sainburg, R.L., Ghez, C., and Kalakanis, D., Intersegmental Dynamics are Controlled by Sequential Anticipatory, Error Correction, and Postural Mechanisms, Neurophysiology, 1999, vol. 81, no. 3, p. 104.

    Google Scholar 

  68. Basmajian, J. and DeLuca, C., Muscles Alive: Williams and Baltimore, M. D., 1985.

  69. Shadmehr R. and Moussavi, Z.M.K., Coactivation Pattern of Arm Muscles in Reaching Movements, in IEEE Canad. Conference on Medicine and Biology (CMBES), 2000.

  70. Luce, R.D., Response Times: Their Role in Inferring Elementary Mental Organization, New York: Oxford University Press, 1986.

    Google Scholar 

  71. Welford, A.T., Choice Reaction Time: Basic Concepts, in Reaction Times, Welford, A.T., Ed., New York: Academic Press, 1995, p. 73.

    Google Scholar 

  72. Rosenbaum, D.A., Hindorff, V., and Munro, E.M., Scheduling and Programming of Rapid Finger Sequences: Tests and Elaborations of the Hierarchical Editor Model, J. Exp. Psychology, Human Perception Performance, 1987, vol. 13, no. 2, p. 193.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuoza, A., Skurvydas, A., Mickeviciene, D. et al. Behavior of dominant and non dominant arms during ballistic protractive target-directed movements. Hum Physiol 35, 576–584 (2009). https://doi.org/10.1134/S0362119709050090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119709050090

Keywords

Navigation