Skip to main content
Log in

Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Bacteriophage endolysins degrading bacterial cell walls are prospective enzymes for therapy of bacterial infections. The genome of the giant bacteriophage phiKZ of Pseudomonas aeruginosa encodes two endolysins, gene products (g.p.) 144 and 181, which are homologous to lytic transglycosylases. Gene 144 encoding a 260 amino acid residue protein was cloned into the plasmid expression vector. Recombinant g.p. 144 purified from Escherichia coli effectively degrades chloroform-treated P. aeruginosa cell walls. The protein has predominantly α-helical conformation and exists in solution in stoichiometric monomer: dimer: trimer equilibrium. Antibodies against the protein bind the phage particle. This demonstrates that g.p. 144 is a structural component of the phiKZ particle, presumably, a phage tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PMSF:

o-phenylmethylsulfonyl fluoride

IPTG:

isopropyl β-D-thiogalactopyranoside

PCR:

polymerase chain reaction; g.p.) gene product

bp:

nucleotide base pairs

References

  1. Hanlon, G. W., Denyer, S. P., Olliff, C. J., and Ibrahim, L. J. (2001) Appl. Environ. Microbiol., 67, 2746–2753.

    Article  CAS  PubMed  Google Scholar 

  2. Krylov, V. N. (2001) Genetika, 37, 869–878.

    CAS  PubMed  Google Scholar 

  3. Nelson, D., Loomis, L., and Fischetti, V. A. (2001) Proc. Natl. Acad. Sci. USA, 98, 4107–4112.

    Article  CAS  PubMed  Google Scholar 

  4. Young, R. (2002) J. Bacteriol., 184, 2572–2575.

    CAS  PubMed  Google Scholar 

  5. Bernhardt, T. G., Wang, I. N., Struck, D. K., and Young, R. (2002) Res. Microbiol., 153, 493–501.

    Article  CAS  PubMed  Google Scholar 

  6. Young, R., Wang, I.-N., and Roof, W. D. (2000) Trends Microbiol., 8, 4974–4984.

    Article  Google Scholar 

  7. Schuch, R., Nelson, D., and Fischetti, V.A. (2002) Nature, 418, 884–889.

    Article  CAS  PubMed  Google Scholar 

  8. Jado, I., Lopez, R., Garcia, E., Fenoll, A., Casal, J., and Garcia, P. (2003) J. Antimicrob. Chemother., 52, 967–973.

    Article  CAS  PubMed  Google Scholar 

  9. Giamarellou, H. (2000) Int. J. Antimicrob. Agents, 16, 103–106.

    CAS  PubMed  Google Scholar 

  10. Mesyanzhinov, V. V., Robben, J., Grymonprez, B., Kostyuchenko, V. A., Bourkaltseva, M. V., Sykilinda, N. N., Krylov, V. N., and Volckaert, G. (2002) J. Mol. Biol., 317, 1–19.

    Article  CAS  PubMed  Google Scholar 

  11. Bourkaltseva, M. V., Krylov, V. N., Pleteneva, E. A., Shaburova, O. V., Krylov, S. V., Volckaert, G., Sykilinda, N. N., Kurochkina, L. P., and Mesyanzhinov, V. V. (2002) Genetika, 38, 1470–1479.

    Google Scholar 

  12. Lavigne, R., Burkal’tseva, M. V., Robben, J., Sykilinda, N. N., Kurochkina, L. P., Grymonprez, B., Jonckx, B., Krylov, V. N., Mesyanzhinov, V. V., and Volckaert, G. (2003) Virology, 312, 49–59.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, P. W., Chu, L., and Guttman, D. S. (2004) J. Bacteriol., 186, 400–410.

    CAS  PubMed  Google Scholar 

  14. Provencher, S. W., and Glockner, J. (1981) Biochemistry, 20, 33–37.

    Article  CAS  PubMed  Google Scholar 

  15. Venyaminov, S. Yu., Baikalov, I. A., Shen, Z. M., Wu, C.-S. C., and Yang, J. T. (1993) Analyt. Biochem., 214, 17–24.

    CAS  PubMed  Google Scholar 

  16. Sreerama, N., and Woody, R. W. (1993) Analyt. Biochem., 209, 32–44.

    CAS  PubMed  Google Scholar 

  17. Laemmli, U. K. (1970) Nature, 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  18. Towbin, J., Staehelen, T., and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA, 76, 4350–4354.

    CAS  PubMed  Google Scholar 

  19. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Nucleic Acids Res., 25, 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  20. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C., Fedorova, N. D., Geer, L. Y., He, S., Hurwitz, D. I., Jackson, J. D., Jacobs, A. R., Lanczycki, C. J., Liebert, C. A., Liu, C., Madej, T., Marchler, G. H., Mazumder, R., Nikolskaya, A. N., Panchenko, A. R., Rao, B. S., Shoemaker, B. A., Simonyan, V., Song, J. S., Thiessen, P. A., Vasudevan, S., Wang, Y., Yamashita, R. A., Yin, J. J., and Bryant, S. H. (2003) Nucleic Acids Res., 31, 383–387.

    Article  CAS  PubMed  Google Scholar 

  21. Holtje, J. V., Mirelman, D., Sharon, N., and Schwarz, U. (1975) J. Bacteriol., 124, 1067–1076.

    CAS  PubMed  Google Scholar 

  22. Vocadlo, D. J., Davies, G. J., Laine, R., and Withers, S. G. (2001) Nature, 412, 835–838.

    Article  CAS  PubMed  Google Scholar 

  23. Van Asselt, E. J., Kalk, K. H., and Dijkstra, B. W. (2000) Biochemistry, 39, 1924–1934.

    PubMed  Google Scholar 

  24. Tews, I., Perrakis, A., Oppenheim, A., Dauter, Z., Wilson, K. S., and Vorgias, C. E. (1996) Nat. Struct. Biol., 3, 638–648.

    Article  CAS  PubMed  Google Scholar 

  25. Koraimann, G. (2003) Cell Mol. Life Sci., 5, 2371–2388.

    Google Scholar 

  26. Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. (2000) J. Mol. Biol., 299, 499–520.

    Article  CAS  PubMed  Google Scholar 

  27. Van Asselt, E. J., Perrakis, A., Kalk, K. H., Lamzin, V. S., and Dijkstra, B. W. (1998) Acta Crystallogr. D. Biol. Crystallogr., 54, 58–73.

    PubMed  Google Scholar 

  28. Reid, C. W., Blackburn, N. T., Legaree, B. A., Auzanneau, F.-I., and Clarke, A. J. (2004) FEBS Lett., 574, 73–79.

    Article  CAS  PubMed  Google Scholar 

  29. Rydman, P. S., and Bamford, D. H. (2002) J. Bacteriol., 184, 104–110.

    Article  CAS  PubMed  Google Scholar 

  30. Monzingo, A. F., Marcotte, E. M., Hart, P. J., and Robertus, J. D. (1996) Nat. Struct. Biol., 3, 133–140.

    Article  CAS  PubMed  Google Scholar 

  31. Dideberg, O., Charlier, P., Dive, G., Joris, B., Frere, J. M., and Ghuysen, J. M. (1982) Nature, 299, 469–470.

    Article  CAS  PubMed  Google Scholar 

  32. Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., Chipman, P. R., Mesyanzinov, V. V., Arisaka, F., and Rossmann, M. G. (2002) Nature, 415, 553–557.

    Article  CAS  PubMed  Google Scholar 

  33. Verheust, C., Fornelos, N., and Mahillon, J. (2004) FEMS Microbiol. Lett., 237, 289–295.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Miroshnikov.

Additional information

Published in Russian in Biokhimiya, 2006, Vol. 71, No. 3, pp. 379–385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miroshnikov, K.A., Faizullina, N.M., Sykilinda, N.N. et al. Properties of the endolytic transglycosylase encoded by gene 144 of Pseudomonas aeruginosa bacteriophage phiKZ. Biochemistry (Moscow) 71, 300–305 (2006). https://doi.org/10.1134/S0006297906030102

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906030102

Key words

Navigation