Skip to main content
Log in

Activation and damage of endothelial cells upon hypoxia/reoxygenation. Effect of extracellular pH

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Disturbances of blood flow upon vascular occlusions and spasms result in hypoxia and acidosis, while its subsequent restoration leads to reoxygenation and pH normalization (re-alkalization) in ischemic sites of the vascular bed. The effect of hypoxia/reoxygenation on activation and stimulation of apoptosis in cultured human endothelial cells was studied. The cells were subjected to hypoxia (2% O2, 5% CO2, 93% N2) for 24 h followed by reoxygenation (21% O2, 5% CO2, 74% N2) for 5 h. Reoxygenation was carried out at different pH-6.4 (preservation of acidosis after hypoxia), 7.0, and 7.4 (partial and complete re-alkalization, respectively). Hypoxia only slightly (by ∼30%) increased the cell adhesion molecule ICAM-1 content on the cell surface, whereas reoxygenation more than doubled its expression. The reoxygenation effect depended on the medium acidity, and ICAM-1 increase was more pronounced at pH 7.0 compared to that at pH 6.4 and 7.4. Neither hypoxia nor reoxygenation induced expression of two other cell adhesion molecules, VCAM and E-selectin. Incubation of cells under hypoxic conditions but not reoxygenation stimulated secretion of von Willebrand factor and increased its concentration in the culture medium by more than 4 times. The percentage of cells containing apoptosis marker, activated caspase-3, was increased by approximately 1.5 times upon hypoxia as well as hypoxia/reoxygenation. Maximal values were achieved when reoxygenation was performed at pH 7.0. These data show that hypoxia/reoxygenation stimulate pro-inflammatory activation (ICAM-1 expression) and apoptosis (caspase-3 activation) of endothelial cells, and the extracellular pH influences both processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EC:

endothelial cell

ICAM-1:

intercellular cell adhesion molecule-1

TNF:

tumor necrosis factor

VCAM:

vascular cell adhesion molecule

References

  1. Stempien-Otero, A., Karsan, A., Cornejo, C. J., Xiang, H., Eunson, T., Morrison, R. S., Kay, M., and Harlan, J. (1999) J. Biol. Chem., 274, 8039–8045.

    Article  PubMed  CAS  Google Scholar 

  2. Li, D., Yang, B., and Mehta, J. L. (1999) Cardiovasc. Res., 42, 805–813.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, C. N., Cheng, W. F., Chang, M. C., Su, Y. N., Chen, C. A., and Hsieh, F. J. (2005) Apoptosis, 10, 887–894.

    Article  PubMed  CAS  Google Scholar 

  4. Antonova, O. A., Loktionova, S. A., Golubeva, N. V., Romanov, Yu. A., and Mazurov, A. V. (2007) Byul. Eksp. Biol. Med., 10, 384–386.

    Google Scholar 

  5. Pinsky, D. J., Naka, Y., Liao, H., Oz, M. C., Wagner, D. D., Mayadas, T. N., Johnson, R. C., Hynes, R. O., Health, M., Lawson, C. A., and Stern, D. M. (1996) J. Clin. Invest., 97, 493–500.

    Article  PubMed  CAS  Google Scholar 

  6. Scarabelli, T. M., Stephanou, A., Rayment, N., Pasini, E., Comini, L., Curello, S., Ferrari, R., Knight, R., and Latchman, D. S. (2001) Circulation, 104, 253–256.

    PubMed  CAS  Google Scholar 

  7. Mold, C., and Morris, C. A. (2001) Immunology, 102, 359–364.

    Article  PubMed  CAS  Google Scholar 

  8. Zhao, H., Miller, M., Pfieffer, K., Buras, J. A., and Stalh, G. L. (2003) FASEB J., 17, 723–734.

    Article  PubMed  CAS  Google Scholar 

  9. Yu, E. Z., Li, Y. Y., Liu, X. H., Kagan, E., and McCarron, R. M. (2004) Lab. Invest., 84, 553–561.

    Article  PubMed  CAS  Google Scholar 

  10. Bresgen, N., Kahlhuber, G., Krizbai, I., Bauer, H., Bauer, H. C., and Eckl, P. M. (2003) J. Neurosci. Res., 72, 327–333.

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida, N., Granger, D. N., Anderson, D. C., Pothlein, R., Lane, C., and Kvietys, P. R. (1992) Am. J. Physiol., 262, H1891–H1898.

    PubMed  CAS  Google Scholar 

  12. Ichikawa, H., Flores, S., Kvietys, P. R., Wolf, R. E., Yoshikawa, T., Granger, D. N., and Aw, T. Y. (1997) Circ. Res., 81, 922–931.

    PubMed  CAS  Google Scholar 

  13. Kokura, S., Wolf, R. E., Yoshikawa, T., Ichikawa, H., Granger, D. N., and Aw, T. Y. (2000) Microcirculation, 7, 13–23.

    Article  PubMed  CAS  Google Scholar 

  14. Hattori, R., Otani, H., Moriguchi, Y., Matsubara, H., Yamamura, T., Nakao, Y., Omiya, H., Osako, M., and Imamura, H. (2001) Am. J. Physiol. Heart Circ. Physiol., 280, H2796–H2803.

    PubMed  CAS  Google Scholar 

  15. Ziegelstein, R. C., He, C., and Hu, Q. (2004) Biochem. Biophys. Res. Commun., 10, 68–73.

    Article  Google Scholar 

  16. Lan, W., Harmon, D., Wang, J. H., Shorten, G., and Redmond, P. (2004) Eur. J. Anaesthesiol., 21, 967–972.

    PubMed  CAS  Google Scholar 

  17. Corcoran, T. B., Engel, A., and Shorten, G. D. (2006) Eur. J. Anaesthesiol., 23, 942–947.

    Article  PubMed  CAS  Google Scholar 

  18. Maurus, C. F., Schmidt, D., Schneider, M. K., Nurina, M. I., Seebach, J. D., and Zund, G. (2003) Eur. J. Cardiothorac. Surg., 23, 976–983.

    Article  PubMed  Google Scholar 

  19. Huck, V., Niemeyer, A., Goerge, T., Schaeker, E. M., Ossig, R., Rogge, P., Schneider, M. F., Oberleithner, H., and Schneider, S. W. (2007) J. Cell. Physiol., 211, 399–409.

    Article  PubMed  CAS  Google Scholar 

  20. Antonov, A. S., Nikolaeva, M. A., Klueva, T. S., Romanov, Y. A., Babaev, V. R., Bystrevskaya, V. B., Perov, N. A., Repin, V. S., and Smirnov, V. N. (1986) Atherosclerosis, 59, 1–19.

    Article  PubMed  CAS  Google Scholar 

  21. Printseva, O. Yu., Peclo, M. M., and Grown, A. M. (1992) Am. J. Pathol., 140, 889–896.

    PubMed  Google Scholar 

  22. Yanushevskaya, E. V., Barkevich, E. A., Khaspekova, S. G., Naymushin, Ya. A., Vlasik, T. N., Likhacheva, E. A., Plyushch, O. P., and Mazurov, A. V. (2005) Gematol. Transfuziol., 50, 20–25.

    CAS  Google Scholar 

  23. Kaplan, S. H., Yang, H., Gilliam, D. E., Shen, J., Lemasters, J. J., and Cascio, W. E. (1995) Cardiovasc. Res., 29, 231–238.

    PubMed  CAS  Google Scholar 

  24. Lemasters, J. J., Bond, J. M., Chacon, E., Harper, I. S., Kaplan, S. H., Ohata, H., Trollinger, D. R., Herman, B., and Cascio, W. E. (1996) EXS, 76, 99–114.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mazurov.

Additional information

Original Russian Text © O. A. Antonova, S. A. Loktionova, Yu. A. Romanov, O. N. Shustova, M. V. Khachikian, A. V. Mazurov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 6, pp. 744–752.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-237, March 1, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonova, O.A., Loktionova, S.A., Romanov, Y.A. et al. Activation and damage of endothelial cells upon hypoxia/reoxygenation. Effect of extracellular pH. Biochemistry Moscow 74, 605–612 (2009). https://doi.org/10.1134/S0006297909060030

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909060030

Key words

Navigation