Skip to main content
Log in

Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Changes in the level of blood cell-free circulating mitochondrial DNA were examined during experimental adrenaline-induced myocardial injury in rats. The amount of mitochondrial DNA in the blood was significantly elevated at 48 and 72 h after subcutaneous injection of adrenaline solution, and it was accompanied by development of multiple smallfocal myocardial ischemia. This suggests that the measured level of blood cell-free circulating mitochondrial DNA might be used as a biomarker of acute myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., and White, H. D. (2012) Writing group on behalf of the joint ESC/ACCF/AHA/WHF task force for the universal definition of myocardial infarction. Third universal definition of myocardial infarction, J. Am. Coll. Cardiol., 60, 1581–1598.

    Article  PubMed  Google Scholar 

  2. Seidlmayer, L. K., Juettner, V. V., Kettlewell, S., Pavlov, E. V., Blatter, L. A., and Dedkova, E. N. (2015) Distinct mPTP activation mechanisms in ischemia-reperfusion: contributions of Ca2+, ROS, pH, and inorganic polyphos-phate, Cardiovasc. Res., 106, 237–248.

    Article  PubMed  Google Scholar 

  3. Gedik, N., Heusch, G., and Skyschally, A. (2013) Infarct size reduction by cyclosporine A at reperfusion involves inhibition of the mitochondrial permeability transition pore but does not improve mitochondrial respiration, Arch. Med. Sci., 9, 968–975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kalogeris, T., Bao, Y., and Korthuis, R. J. (2014) Mitochondrial reactive oxygen species: a double-edged sword in ischemia/reperfusion vs preconditioning, Redox Biol., 2, 702–714.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Green, D. R., and Kroemer, G. (2004) The pathophysiolo-gy of mitochondrial cell death, Scienc., 305, 626–662.

    Article  CAS  Google Scholar 

  6. Patrushev, M., Kasymov, V., Patrusheva, V., Ushakova, T., Gogvadze, V., and Gaziev, A. (2004) Mitochondrial perme-ability transition triggers the release of mtDNA fragments, Cell Mol. Life Sci., 61, 3100–3103.

    Article  CAS  PubMed  Google Scholar 

  7. Patrushev, M., Kasymov, V., Patrusheva, V., Ushakova, T., Gogvadze, V., and Gaziev, A. I. (2006) Release of mito-chondrial DNA fragments from brain mitochondria of irra-diated mice, Mitochondrio., 6, 43–47.

    Article  CAS  Google Scholar 

  8. Garcia, N., and Chavez, E. (2007) Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size, Life Sci., 81, 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  9. Chang, C. P., Chia, R. H., Wu, T. L., Tsao, K. C., Sun, C. F., and Wu, J. T. (2003) Elevated cell-free serum DNA detected in patients with myocardial infarction, Clin. Chim. Act., 327, 95–101.

    Article  CAS  Google Scholar 

  10. Ellinger, J., Muller, S. C., Wernert, N., von Ruecker, A., and Bastian, P. J. (2008) Mitochondrial DNA in serum of patients with prostate cancer: a predictor of biochemical recurrence after prostatectomy, BJU Int., 102, 628–632.

    Article  PubMed  Google Scholar 

  11. Nakahira, K., Kyung, S. Y., Rogers, A. J., Gazourian, L., Youn, S., Massaro, A. F., Quintana, C., Osorio, J. C., Wang, Z., Zhao, Y., Lawler, L. A., Christie, J. D., Meyer, N. J., Mc Causland, F. R., Waikar, S. S., Waxman, A. B., Chung, R. T., Bueno, R., Rosas, I. O., Fredenburgh, L. E., Baron, R. M., Christiani, D. C., Hunninghake, G. M., and Choi, A. M. (2013) Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation, PLoS Med., 10, e1001577.

  12. Sun, S., Sursal, T., Adibnia, Y., Zhao, C., Zheng, Y., Li, H., Otterbein, L. E., Hauser, C. J., and Itagaki, K. (2013) Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways, PLoS One, 8, e59989.

  13. Zhang, Q., Itagaki, K., and Hauser, C. J. (2010) Mitochondrial DNA is released by shock and activates neu-trophils via p38 map kinase, Shoc., 34, 55–59.

    Article  Google Scholar 

  14. Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Natur., 464, 104–107.

    Article  CAS  Google Scholar 

  15. Wang, L., Xie, L., Zhang, Q., Cai, X., Tang, Y., Wang, L., Hang, T., Liu, J., and Gong, J. (2015) Plasma nuclear and mitochondrial DNA levels in acute myocardial infarction patients, Coron. Artery Dis., 26, 296–300.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bliksoen, M., Mariero, L. H., Ohm, I. K., Haugen, F., Yndestad, A., Solheim, S., Seljeflot, I., Ranheim, T., Andersen, G. O., Aukrust, P., Valen, G., and Vinge, L. E. (2012) Increased circulating mitochondrial DNA after myocardial infarction, Int. J. Cardiol., 158, 132–134.

    Article  PubMed  Google Scholar 

  17. Arnalich, F., Codoceo, R., Lopez-Collazo, E., and Montiel, C. (2012) Circulating cell-free mitochondrial DNA: a better early prognostic marker in patients with out-of-hospital cardiac arrest, Resuscitatio., 83, 162–163.

    Article  Google Scholar 

  18. Mallov, S., and Gilmour, R. F. (1977) Inhibition of epi-nephrine-induced myocardial necrosis in rats by adminis-tration of single doses of ethanol, Drug Alcohol Depend., 2, 397–407.

    Article  CAS  PubMed  Google Scholar 

  19. Chiu, R. W., Chan, L. Y., Lam, N. Y., Tsui, N. B., Ng, E. K., Rainer, T. H., and Lo, Y. M. (2003) Quantitative analy-sis of circulating mitochondrial DNA in plasma, Clin. Chem., 49, 719–726.

    Article  CAS  PubMed  Google Scholar 

  20. Sudakov, N. P., Popkova, T. P., Novikova, M. A., Katyshev, A. V., Nikiforov, S. B., Pushkarev, B. G., Goldberg, O. A., Klimenkov, I. V., Lepekhova, S. A., Ezhikeeva, S. D., Ten, M. N., Osipov, V. G., and Konstantinov, Yu. M. (2012) The level of blood plasma mitochondrial DNA upon acute myocardium damage in experiment, Biopolym. Cel., 28, 321–324.

    Google Scholar 

  21. Pietila, K. O., Harmoinen, A. P., Jokiniitty, J., and Pasternack, A. I. (1996) Serum C-reactive protein concen-tration in acute myocardial infarction and its relationship to mortality during 24 months of follow-up in patients under thrombolytic treatment, Eur. Heart J., 17, 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  22. Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909–950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zorov, D. B., Juhaszova, M., Yaniv, Y., Nuss, H. B., Wang, S., and Sollott, S. J. (2009) Regulation and pharmacology of the mitochondrial permeability transition pore, Cardiovasc. Res., 83, 213–225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Starkov, A. A. (2008) The role of mitochondria in reactive oxygen species metabolism and signaling, Ann. N. Y. Acad. Sci., 1147, 37–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Skulachev, V. P. (2006) Bioenergetic aspects of apoptosis, necrosis, and mitoptosis, Apoptosi., 11, 473–485.

    Article  CAS  Google Scholar 

  26. Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS) induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med., 192, 1001–1014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2003) Plant mitochondria actively import DNA via the permeability transition pore complex, EMBO J., 22, 1245–1254.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Koulintchenko, M., Temperley, R. J., Mason, P. A., Dietrich, A., and Lightowlers, R. N. (2006) Natural com-petence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Hum. Mol. Genet., 15, 143–154.

    Article  CAS  PubMed  Google Scholar 

  29. Zorov, D. B. (1996) Mitochondrial transport of nucleic acids. Involvement of the benzodiazepine receptor, Biochemistry (Moscow), 61, 939–946.

    Google Scholar 

  30. Kaczmarek, A., Vandenabeele, P., and Krysko, D. V. (2013) Necroptosis: the release of damage-associated molecular pat-terns and its physiological relevance, Immunit., 38, 209–223.

    Article  CAS  Google Scholar 

  31. Guescini, M., Guidolin, D., Vallorani, L., Casadei, L., Gioacchini, A. M., Tibollo, P., Battistelli, M., Falcieri, E., Battistin, L., Agnati, L. F., and Stocchi, V. (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction, Exp. Cell Res., 316, 1977–1984.

    Article  CAS  PubMed  Google Scholar 

  32. Gahan, P. B. (2012) Biology of circulating nucleic acids and possible roles in diagnosis and treatment in diabetes and cancer, Infect. Disord. Drug Target., 12, 360–370.

    Article  CAS  Google Scholar 

  33. Zhang, Q., Itagaki, K., and Hauser, C. J. (2010) Mitochondrial DNA is released by shock and activates neu-trophils via p38 map kinase, Shoc., 34, 55–59.

    Article  Google Scholar 

  34. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I., and Simon, H. U. (2009) Viable neutrophils release mitochon-drial DNA to form neutrophil extracellular traps, Cell Death Differ., 16, 1438–1444.

    Article  CAS  PubMed  Google Scholar 

  35. Plotnikov, E. Y., Silachev, D. N., Jankauskas, S. S., Rokitskaya, T. I., Chupyrkina, A. A., Pevzner, I. B., Zorova, L. D., Isaev, N. K., Antonenko, Y. N., Skulachev, V. P., and Zorov, D. B. (2012) Mild uncoupling of respira-tion and phosphorylation as a mechanism providing nephron- and neuroprotective effects of penetrating cations of the SkQ family, Biochemistry (Moscow), 77, 1029–1037.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Konstantinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudakov, N.P., Popkova, T.P., Katyshev, A.I. et al. Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia. Biochemistry Moscow 80, 1387–1392 (2015). https://doi.org/10.1134/S000629791510020X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791510020X

Keywords

Navigation