Skip to main content
Log in

Upregulation of p72 enhances malignant migration and invasion of glioma cells by repressing Beclin1 expression

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

p72 is the member of the DEAD-box RNA helicase family, which can unwind double-stranded RNA and is efficient for microRNA (miRNA, miR) processing. However, its specific role in glioma has not been elucidated. First, the expression of p72 in glioma cell lines and tissues was explored using Western blot. To explore the role of p72 on glioma progression, adenovirus inhibiting p72 was transfected into A172 and T98G cells. Cell autophagy was determined using GFPLC3 dots, and cell apoptosis was determined using flow cytometry. The effect of Beclin1 was explored using GFP-LC3 dots, flow cytometry, and colony formation. The possible miRNAs that target the 3′-untranslated region (3′-UTR) of Beclin1 were predicted using TargetScan. Dual luciferase reporter assay was applied to determine whether these miRNAs bind to the 3′-UTR of Beclin1. The expression of p72 was significantly increased in glioma cell lines and tissues. Autophagy-related protein Beclin1 was found to be significantly enhanced when p72 was inhibited. The accumulation of GFP-LC3 dots was significant in cells transfected with ad-sh-p72 compared with ad-con. Colony formation capacity and cell apoptosis were also found to be significantly decreased with p72 inhibition. Furthermore, upregulation of Beclin1 contributes to A172 cell autophagy, invasion, and apoptosis. Overexpression of p72 induces increased miR-34-5p and miR-5195-3p expression in A172 and T98G cells. Beclin1 was the target gene of miR-34-5p and miR-5195-3p. In conclusion, we found for the first time that overexpression of p72 decreased Beclin1 expression partially by increasing miR-34-5p and miR-5195-3p expression in A172 and T98G cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omuro, A., and DeAngelis, L. M. (2013) Glioblastoma and other malignant gliomas: a clinical review, JAMA, 310, 1842–1850.

    Article  CAS  PubMed  Google Scholar 

  2. Koshkin, P. A., Chistiakov, D. A., and Chekhonin, V. P. (2013) Role of microRNAs in mechanisms of glioblastoma resistance to radioand chemotherapy, Biochemistry (Moscow), 78, 325–334.

    Article  CAS  Google Scholar 

  3. Stupp, R., and Weber, D. C. (2005) The role of radioand chemotherapy in glioblastoma, Onkologie, 28, 315–317.

    PubMed  Google Scholar 

  4. Ryu, C. H., Yoon, W. S., Park, K. Y., Kim, S. M., Lim, J. Y., Woo, J. S., Jeong, C. H., Hou, Y., and Jeun, S. S. (2012) Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells, J. Biomed. Biotechnol., 98 74–95.

    Google Scholar 

  5. Stupp, R., Hegi, M. E., Mason, W. P., Van den Bent, M. J., Taphoorn, M. J., Janzer, R. C., Ludwin, S. K., Allgeier, A., Fisher, B., Belanger, K., Hau, P., Brandes, A. A., Gijtenbeek, J., Marosi, C., Vecht, C. J., Mokhtari, K., Wesseling, P., Villa, S., Eisenhauer, E., Gorlia, T., Weller, M., Lacombe, D., Cairncross, J. G., and Mirimanoff, R. O.; European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol., 10, 459–466.

    Article  CAS  PubMed  Google Scholar 

  6. Yan, Y., Xu, Z., Dai, S., Qian, L., Sun, L., and Gong, Z. (2016) Targeting autophagy to sensitive glioma to temozolomide treatment, J. Exp. Clin. Cancer Res., 35, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, L., Long, L., Wang, W., and Liang, Z. (2015) Resveratrol, a potential radiation sensitizer for glioma stem cells both in vitro and in vivo, J. Pharmacol. Sci., 129, 216225.

    Article  Google Scholar 

  8. Alers, S., Loffler, A. S., Wesselborg, S., and Stork, B. (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks, Mol. Cell. Biol., 32, 2–11.

    Article  CAS  PubMed  Google Scholar 

  9. Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease, Cell, 132, 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Araya, J., Hara, H., and Kuwano, K. (2013) Autophagy in the pathogenesis of pulmonary disease, Intern. Med., 52, 2295–2303.

    Article  PubMed  Google Scholar 

  11. Xavier, R. J., Huett, A., and Rioux, J. D. (2008) Autophagy as an important process in gut homeostasis and Crohn’s disease pathogenesis, Gut, 57, 717–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, J. L., Chen, F. F., Chang, S. F., Chen, C. N., Lung, J., Lo, C. H., Lee, F. H., Lu, Y. C., and Hung, C. H. (2015) Expression of Beclin family proteins is associated with tumor progression in oral cancer, PLoS One, 10, e0141308.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yue, Z., Jin, S., Yang, C., Levine, A. J., and Heintz, N. (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor, Proc. Natl. Acad. Sci. USA, 100, 1507715082.

    Google Scholar 

  14. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E. L., Mizushima, N., Ohsumi, Y., Cattoretti, G., and Levine, B. (2003) Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene, J. Clin. Invest., 112, 18091820.

    Article  Google Scholar 

  15. Song, J., Oh, Y., and Lee, J. E. (2015) miR-Let7A modulates autophagy induction in LPS-activated microglia, Exp. Neurobiol., 24, 117–125.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chatterjee, A., Chattopadhyay, D., and Chakrabarti, G. (2014) miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering Beclin1 expression, PLoS One, 9, e95716.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Y., Yang, W. Q., Zhu, H., Qian, Y. Y., Zhou, L., Ren, Y. J., Ren, X. C., Zhang, L., Liu, X. P., Liu, C. G., Ming, Z. J., Li, B., Chen, B., Wang, J. R., Liu, Y. B., and Yang, J. M. (2014) Regulation of autophagy by miR-30d impacts sensitivity of anaplastic thyroid carcinoma to cisplatin, Biochem. Pharmacol., 87, 562–570.

    Article  CAS  PubMed  Google Scholar 

  18. Chu, Y. D., Chen, H. K., Huang, T., and Chan, S. P. (2016) A novel function for the DEAD-box RNA helicase DDX23 in primary microRNA processing in Caenorhabditis elegans, Devel. Biol., 409, 459–472.

    Article  CAS  Google Scholar 

  19. Linder, P., and Jankowsky, E. (2011) From unwinding to clamping–the DEAD box RNA helicase family, Nat. Rev. Mol. Cell Biol., 12, 505–516.

    Article  CAS  PubMed  Google Scholar 

  20. Jalal, C., Uhlmann-Schiffler, H., and Stahl, H. (2007) Redundant role of DEAD box proteins p68 (Ddx5) and p72/p82 (Ddx17) in ribosome biogenesis and cell proliferation, Nucleic Acids Res., 35, 3590–3601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Retraction Fukuda, T., Yamagata, K., Fujiyama, S., Matsumoto, T., Koshida, I., Yoshimura, K., Mihara, M., Naitou, M., Endoh, H., Nakamura, T., Akimoto, C., Yamamoto, Y., Katagiri, T., Foulds, C., Takezawa, S., Kitagawa, H., Takeyama, K., O’Malley, B. W., and Kato, S. (2014) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs, Nat. Cell Biol., 16, 1126.

    Article  Google Scholar 

  22. Moy, R. H., Cole, B. S., Yasunaga, A., Gold, B., Shankarling, G., Varble, A., Molleston, J. M., tenOever, B. R., Lynch, K. W., and Cherry, S. (2014) Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense, Cell, 158, 764–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fukuda, T., Yamagata, K., Fujiyama, S., Matsumoto, T., Koshida, I., Yoshimura, K., Mihara, M., Naitou, M., Endoh, H., Nakamura, T., Akimoto, C., Yamamoto, Y., Katagiri, T., Foulds, C., Takezawa, S., Kitagawa, H., Takeyama, K., O’Malley, B. W., and Kato, S. (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs, Nat. Cell Biol., 9, 604–611.

    Article  CAS  PubMed  Google Scholar 

  24. Buckner, J. C. (2003) Factors influencing survival in highgrade gliomas, Semin. Oncol., 30, 10–14.

    Article  PubMed  Google Scholar 

  25. DeAngelis, L. M. (2001) Brain tumors, N. Engl. J. Med., 344, 114–123.

    Article  CAS  PubMed  Google Scholar 

  26. Kakkar, A., Sharma, M. C., Suri, V., Kaushal, S., Chandra, S. P., Garg, A., and Sarkar, C. (2014) Angiocentric glioma: a treatable cause of epilepsy: report of a rare case, Neurol. India, 62, 677–679.

    Article  PubMed  Google Scholar 

  27. Kong, B. H., Moon, J. H., Huh, Y. M., Shim, J. K., Lee, J. H., Kim, E. H., Chang, J. H., Kim, D. S., Hong, Y. K., Kim, S. H., Lee, S. J., and Kang, S. G. (2014) Prognostic value of glioma cancer stem cell isolation in survival of primary glioblastoma patients, Stem Cells Int., 8 38–950.

    Google Scholar 

  28. Russell, R. (2015) Unwinding the mechanisms of a DEADbox RNA helicase in cancer, J. Mol. Biol., 427, 17971800.

    Article  Google Scholar 

  29. Epling, L. B., Grace, C. R., Lowe, B. R., Partridge, J. F., and Enemark, E. J. (2015) Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis, J. Mol. Biol., 427, 1779–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rocak, S., and Linder, P. (2004) DEAD-box proteins: the driving forces behind RNA metabolism, Nat. Rev. Mol. Cell Biol., 5, 232–241.

    Article  CAS  PubMed  Google Scholar 

  31. Caretti, G., Schiltz, R. L., Dilworth, F. J., Di Padova, M., Zhao, P., Ogryzko, V., Fuller-Pace, F. V., Hoffman, E. P., Tapscott, S. J., and Sartorelli, V. (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation, Dev. Cell, 11, 547–560.

    Article  CAS  PubMed  Google Scholar 

  32. Galluzzi, L., Pietrocola, F., Bravo-San Pedro, J. M., Amaravadi, R. K., Baehrecke, E. H., Cecconi, F., Codogno, P., Debnath, J., Gewirtz, D. A., Karantza, V., Kimmelman, A., Kumar, S., Levine, B., Maiuri, M. C., Martin, S. J., Penninger, J., Piacentini, M., Rubinsztein, D. C., Simon, H. U., Simonsen, A., Thorburn, A. M., Velasco, G., Ryan, K. M., and Kroemer, G. (2015) Autophagy in malignant transformation and cancer progression, EMBO J., 34, 856–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo, J. Y., Xia, B., and White, E. (2013) Autophagy-mediated tumor promotion, Cell, 155, 1216–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kenific, C. M., and Debnath, J. (2015) Cellular and metabolic functions for autophagy in cancer cells, Trends Cell Biol., 25, 37–45.

    Article  CAS  PubMed  Google Scholar 

  35. Perez, E., Das, G., Bergmann, A., and Baehrecke, E. H. (2015) Autophagy regulates tissue overgrowth in a contextdependent manner, Oncogene, 34, 3369–3376.

    Article  CAS  PubMed  Google Scholar 

  36. Kihara, A., Kabeya, Y., Ohsumi, Y., and Yoshimori, T. (2001) Beclin–phosphatidylinositol 3-kinase complex functions at the trans-Golgi network, EMBO Rep., 2, 330–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Janknecht, R. (2010) Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17), Am. J. Transl. Res., 2, 223–234.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Song.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM15-382, April 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tian, H., Miao, Y. et al. Upregulation of p72 enhances malignant migration and invasion of glioma cells by repressing Beclin1 expression. Biochemistry Moscow 81, 574–582 (2016). https://doi.org/10.1134/S0006297916060031

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297916060031

Key words

Navigation