Skip to main content
Log in

Analysis of Collagen Spatial Structure Using Multiphoton Microscopy and Machine Learning Methods

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Pathogenesis of many diseases is associated with changes in the collagen spatial structure. Traditionally, the 3D structure of collagen in biological tissues is analyzed using histochemistry, immunohistochemistry, magnetic resonance imaging, and X-radiography. At present, multiphoton microscopy (MPM) is commonly used to study the structure of biological tissues. MPM has a high spatial resolution comparable to histological analysis and can be used for direct visualization of collagen spatial structure. Because of a large volume of data accumulated due to the high spatial resolution of MPM, special analytical methods should be used for identification of informative features in the images and quantitative evaluation of relationship between these features and pathological processes resulting in the destruction of collagen structure. Here, we describe current approaches and achievements in the identification of informative features in the MPM images of collagen in biological tissues, as well as the development on this basis of algorithms for computer-aided classification of collagen structures using machine learning as a type of artificial intelligence methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGE:

advanced glycation end-product

ANN:

artificial neural network

AUC:

area under ROC curve

CNN:

convolutional neural network

CPA:

collagen proportional area

DTI:

diffusion tensor imaging

ECM:

extracellular matrix

FLIM:

fluorescence lifetime imaging

FOS:

first-order statistics

GLCM:

gray-level co-occurrence matrix

IR:

infrared

MP:

metalloproteinase

MPM:

multiphoton microscopy

MRI:

magnetic resonance imaging

PCA:

principal component analysis

ReLU:

rectified linear unit

ROC:

receiver operating characteristic

ROS:

reactive oxygen species

SHG:

second harmonic generation

SIFT:

scale invariant feature transform

SOS:

second-order statistics

SVM:

support vector machine

TCSPC:

time-correlated single photon counting

TDS:

training dataset

TPF:

two-photon fluorescence

TPM:

two-photon microscopy

References

  1. Andriotis, O. G., Chang, S. W., Vanleene, M., Howarth, P. H., Davies, D. E., Shefelbine, S. J., Buehler, M. J., and Thurner, P. J. (2015) Structure–mechanics relationships of collagen fibrils in the osteogenesis imperfecta mouse model, J. R. Soc. Interface, 12, 20150701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kapuler, O., Selskaya, B., Galeeva, A., and Kamilov, F. (2015) Metabolism of collagen fibers on the background of age–related changes, Vrach, No. 8, 64–69.

    Google Scholar 

  3. Lin, D., Chun, T. H., and Kang, L. (2016) Adipose extra–cellular matrix remodelling in obesity and insulin resist–ance, Biochem. Pharmacol., 119, 8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. http://www.medsest.ru/img/articles/vtorichnaya–struktura–v–vide–a–spirali–ili–v–skladchatoy–struktury.jpg

  5. http://www.dcp–recovery.ru/p/blog–page_2.html

  6. Simonenko, G. V., and Tuchin, V. V. (2007) Basic Knowledge about the Structure of Different Type Biological Tissues. Additional Knowledge from Human Anatomy [in Russian], Saratov State University, Saratov.

    Google Scholar 

  7. Gelse, K., Poeschl, E., and Aigner, T. (2003) Collagens − structure, function, and biosynthesis, Adv. Drug Deliv. Rev., 55, 1531–1546.

    Article  CAS  PubMed  Google Scholar 

  8. Mostaço–Guidolin, L. B., Ko, A. C.–T., Wang, F., Xiang, B., Hewko, M., Tian, G., Major, A., Shiomi, M., and Sowa, M. G. (2013) Collagen morphology and texture analysis: from statistics to classification, Sci. Rep., 3, 2190.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aziz, J., Shezali, H., Radzi, Z., Yahya, N. A., Abu Kassim, N. H., Czernuszka, J., and Rahman, M. T. (2016) Molecular mechanisms of stress–responsive changes in col–lagen and elastin networks in skin, Skin Pharmacol. Physiol., 29, 190–203.

    Article  CAS  PubMed  Google Scholar 

  10. Said, G., Guilbert, M., Millerot–Serrurot, E., Van Gulick, L., Terryn, C., Garnotel, R., and Jeannesson, P. (2012) Impact of carbamylation and glycation of collagen type I on migration of HT1080 human fibrosarcoma cells, Int. J. Oncol., 40, 1797–1804.

    CAS  PubMed  Google Scholar 

  11. Avery, N. C., and Bailey, A. J. (2006) The effects of the Maillard reaction on the physical properties and cell inter–actions of collagen, Pathol. Biol. (Paris), 54, 387–395.

    Article  CAS  Google Scholar 

  12. Yuen, A., Laschinger, C., Talior, I., Leev, W., Chan, M., Birek, J., Young, E. W., Sivagurunathan, K., Won, E., Simmons, C. A., and McCulloch, C. A. (2010) Methylglyoxal–modified collagen promotes myofibroblast differentiation, Matrix Biol., 29, 537–548.

    Article  CAS  PubMed  Google Scholar 

  13. Kemeny, S. F., Figueroa, D. S., Andrews, A. M., Barbee, K. A., and Clyne, A. M. (2011) Glycated collagen alters endothelial cell actin alignment and nitric oxide release in response to fluid shear stress, J. Biomech., 44, 1927–1935.

    Article  PubMed  Google Scholar 

  14. Titov, V. N., Khokhlova, N. V., and Shiriaeva, I. K. (2013) Glucose, glycotoxins, and protein glycation products: the role in pathogenesis, Klin. Med. (Mosk.), 91, 15–24.

    CAS  Google Scholar 

  15. Tu, Y., and Quan, T. (2016) Oxidative stress and human skin connective tissue aging, Cosmetics, 3, 1–12.

    Article  CAS  Google Scholar 

  16. Jablonska–Trypuc, A., Matejczyk, M., and Rosochacki, S. (2016) Matrix metalloproteinases (MMPS), the main extracellular matrix (ECM) enzymes in collagen degrada–tion, as a target for anticancer drugs, J. Enzyme. Inhib. Med. Chem., 31, 177–183.

    Article  CAS  PubMed  Google Scholar 

  17. Siwik, D. A., Pagano, P. J., and Colucci, W. S. (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts, Am. J. Physiol. Cell Physiol., 280, 53–60.

    Article  Google Scholar 

  18. Rutkowski, J. M., Moya, M., Johannes, J., Goldman, J., and Swartza, M. A. (2006) Secondary lymphedema in the mouse tail: lymphatic hyperplasia, VEGF–C upregulation, and the protective role of MMP–9, Microvasc. Res., 72, 161–171.

    CAS  Google Scholar 

  19. Nikolaev, V. V., Kurochkina, A. S., Knyazkova, A. I., Vrazhnov, D. A., and Kistenev, Y. V. (2018) Study on lym–phedema disease using high resolution multiphoton microscopy and the FLIM technology, in Proc. XV Int. Conf. Students, Aspirants, Young Researchers “Prospects of Fundamental Science Development”.

    Google Scholar 

  20. Fang, M., Yuan, J., Peng, C., and Li, Y. (2014) Collagen as a double–edged sword in tumor progression, Tumour Biol., 35, 2871–2882.

    Article  CAS  PubMed  Google Scholar 

  21. Polasek, M., Yang, Y., Schuhle, D. T., Yaseen, M. A., Kim, Y. R., Sung, Y. S., Guimaraes, A. R., and Caravan, P. (2017) Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer, Sci. Rep., 7, 1–10.

    Article  CAS  Google Scholar 

  22. Zhang, L., Albon, J., Jones, H., Gouget, C. L. M., Ethier, C. R., Goh, J. C. H., and Girard, M. J. A. (2015) Collagen microstructural factors influencing optic nerve head bio–mechanics, Invest. Ophthalmol. Vis. Sci., 56, 2031–2042.

    Article  CAS  PubMed  Google Scholar 

  23. Pageon, H., Zucchi, H., Rousset, F., Monnier, V. M., and Asselineau, D. (2014) Skin aging by glycation: lessons from the reconstructed skin model, Clin. Chem. Lab. Med., 52, 169–174.

    Article  CAS  PubMed  Google Scholar 

  24. Gogola, A., Jan, N.–J., Brazile, B., Lam, P., Lathrop, K. L., Chan, K. C., and Sigal, I. A. (2018) Spatial patterns and age–related changes of the collagen crimp in the human cornea and sclera, Invest. Ophthalmol. Vis. Sci., 59, 2987–2998.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Navnita, S., Savita, S., Rithesh, K., and Shivaprasad, B. (2017) Evaluation of collagen degradation in gingival epithelium and connective tissue of chronic periodontitis patients with and without diabetes mellitus, Int. J. Sci. Res., 6, 33–35.

    Google Scholar 

  26. Tuchin, V. V. (2015) Tissue optics and photonics: light–tis–sue interaction, J. Biomed. Photonics Eng., 1, 98–135.

    Article  Google Scholar 

  27. Topping, G., Malda, J., Dawson, R., and Upton, Z. (2006) Development and characterization of human skin equiva–lents and their potential application as a burn wound model, Primary Intention, 14, 14–21.

    Google Scholar 

  28. Oostendorp, C., Uijtdewilligen, P. J. E., Versteeg, E. M., Hafmans, T. G., van den Bogaard, E. H., de Jonge, P. K. J. D., Pirayesh, A., von den Hoff, J. W., Reichmann, E., Daamen, W. F., and van Kuppevelt, T. H. (2016) Visualization of newly synthesized collagen in vitro and in vivo, Sci. Rep., 6, 1–7.

    Article  CAS  Google Scholar 

  29. Ross, K. A., Williams, R. M., Schnabel, L. V., Mohammed, H. O., Potter, H. G., Bradica, G., Castiglione, E., Pownder, S. L., Satchell, P. W., Saska, R. A., and Fortier, L. A. (2013) Comparison of three methods to quantify repair cartilage collagen orientation, Cartilage, 4, 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jan, N.–J., Lathrop, K., and Sigal, I. A. (2017) Collagen architecture of the posterior pole: high–resolution widefield of view visualization and analysis using polarized light microscopy, Invest. Ophthalmol. Vis. Sci., 58, 735–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fullerton, G. D., and Rahal, A. (2007) Collagen structure: the molecular source of the tendon magic angle effect, J. Magn. Reson. Imag., 25, 345–361.

    Article  Google Scholar 

  32. Ghazanfari, S., Driessen–Mol, A., Strijkers, G. J., Baaijens, F. P. T., and Bouten, C. V. C. (2015) The evolu–tion of collagen fiber orientation in engineered cardiovas–cular tissues visualized by diffusion tensor imaging, PLoS One, 10, 1–15.

    Article  CAS  Google Scholar 

  33. Johnson, G. A., Liu, C., Wei, H., Gibbs, E., Zhao, P., Wang, N., Cofer, G. P., and Zhang, Y. (2017) Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage, Magn. Reson. Med., 78, 1683–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bashkatov, A. N., Genina, E. A., Kozintseva, M. D., Kochubei, V. I., Gorodkov, S. Y., and Tuchin, V. V. (2016) Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm, Opt. Spectrosc., 120, 1–8.

    Article  CAS  Google Scholar 

  35. Yang, M. F., Tuchin, V. V., and Yaroslavsky, A. N. (2009) Principles of light–skin interactions, in Light–Based Therapies for Skin of Color (Baron, E., ed.) Springer, London, pp. 1–44.

    Google Scholar 

  36. Roth, S., and Freund, I. (1979) Second harmonic genera–tion in collagen, J. Chem. Phys., 70, 1637–1643.

    Article  CAS  Google Scholar 

  37. Dumas, D., Werkmeister, E., Hupont, S., Huselstein, C., De Isla, N., Rousseau, M., Menu, P., and Mainard, D. (2014) Non–invasive second harmonic generation (SHG) in macroscopy (MacroSHG) as bio–diagnosis to image col–lagen network organization in extracellular matrix, Engineering, 6, 485–490.

    Article  Google Scholar 

  38. Tuchin, V. V. (2006) Optical Clearing of Tissues and Blood, SPIE Press, Bellingham.

    Google Scholar 

  39. Tseng, J.–Y., Ghazaryan, A. A., Lo, W., Chen, Y.–F, Hovhannisyan, V., Chen, S.–J., Tan, H.–Y., and Dong, C.–Y. (2011) Multiphoton spectral microscopy for imaging and quantification of tissue glycation, Biomed. Opt. Express, 2, 218–230.

    Article  CAS  Google Scholar 

  40. Huang, S., Heikal, A. A., and Webb, W. W. (2002) Two–photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein, Biophys. J., 82, 2811–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sdobnov, A., Darvin, M. E., Lademann, J., and Tuchin, V. (2017) A comparative study of ex vivo skin optical clearing using two–photon microscopy, J. Biophotonics, 10, 1115–1123.

    Article  CAS  PubMed  Google Scholar 

  42. Park, C. Y., Marando, C. M., Liao, J. A., Lee, J. K., Kwon, J., and Chuck, R. S. (2016) Details of the collagen and elastin architecture in the human limbal conjunctiva, Tenon’s capsule and sclera revealed by two–photon excited fluorescence microscopy, Invest. Ophthalmol. Vis. Sci., 57, 5602–5610.

    CAS  PubMed  Google Scholar 

  43. Ambekar, R., Lau, T.–Y., Walsh, M., Bhargava, R., and Toussaint, K. C., Jr. (2012) Quantifying collagen structure in breast biopsies using second–harmonic generation imag–ing, Biomed. Opt. Express, 3, 2021–2035.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Golaraei, A., Kontenis, L., Cisek, R., Tokarz, D., Done, S. J., Wilson, B. C., and Barzda, V. (2016) Changes of collagen ultrastructure in breast cancer tissue determined by second–harmonic generation double Stokes–Mueller polarimetric microscopy, Biomed. Opt. Express, 7, 4054–4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bogdanov, A. A., and Mazzanti, M. L. (2013) Fluorescent macromolecular sensors of enzymatic activity for in vivo imaging, Progr. Mol. Biol. Translat. Sci., 113, 349–387.

    Article  CAS  Google Scholar 

  46. Vishwanath, V., Frank, K. E., Elmets, C. A., Dauchot, P. J., and Monnier, V. M. (1986) Glycation of skin collagen in type I diabetes mellitus correlation with long–term compli–cations, Diabetes, 35, 916–921.

    Article  CAS  PubMed  Google Scholar 

  47. Depeursinge, A., Fageot, J., and Al–Kadi, O. S. (2018) Fundamentals of texture processing for biomedical image analysis: a general definition and problem formulation, in Biomedical Texture Analysis: Fundamentals, Applications, Tools and Challenges (Depeursinge, A., Al–Kadi, O. S., and Ross Mitchell, J., eds.), Academic Press, pp. 1–27.

    Google Scholar 

  48. Castellano, G., Bonihla, L., Li, L. M., and Cendes, F. (2004) Texture analysis of medical images, Clin. Radiol., 59, 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  49. Lowe, D. G. (1999) Object recognition from local scale–invariant features, Proc. 7th IEEE Int. Conf. Computer Vision, 2, 1150–1157.

    Article  Google Scholar 

  50. Dalal, N., and Triggs, B. (2005) Histograms of oriented gradients for human detection, IEEE Computer Soc. Conf. Computer Vision Pattern Recognition, Vol. 1, pp. 886–893.

    Google Scholar 

  51. Donoho, D. L., and Huo, X. (1999) Combined image rep–resentation using edgelets and wavelets, Wavelet Applications Signal Image Processing VII, 3813, 468–477.

    Article  Google Scholar 

  52. Huang, J., Kumar, R., Mitra, M., Zhu, W.–J., and Zabih, R. (1997) Image indexing using color correlograms, Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition, pp. 762–768.

    Google Scholar 

  53. Guo, Z., Zhang, L., and Zhang, D. (2010) A completed modeling of local binary pattern operator for texture classi–fication, IEEE Transact. Image Process., 19, 1657–1663.

    Article  Google Scholar 

  54. Simoncelli, E. P., and Freeman, W. T. (1995) The steerable pyramid: a flexible architecture for multi–scale derivative computation, Image Processing, Proc. Intern. Conf. IEEE, 3, 444–447.

    Article  Google Scholar 

  55. Haralick, R. M., Sternberg, S. R., and Zhuang, X. (1987) Image analysis using mathematical morphology, IEEE Trans. Pattern Analysis Machine Intelligence, 4, 532–550.

    Article  Google Scholar 

  56. Materka, A., and Strzelecki, M. (1998) Texture Analysis Methods–A Review, Technical University of Lodz, Institute of Electronics, COST B11 report, pp. 9–11.

    Google Scholar 

  57. Fletcher, N. D., and Evans, A. N. (2005) Texture segmen–tation using area morphology local granulometries, in Mathematical Morphology: 40Years On. Proc. 7th Int. Symp. on Mathematical Morphology (Ronse, C., Najman, L., and Decenciere, E., eds.) Springer, Dordrecht, pp. 367–376.

    Google Scholar 

  58. Bigun, J., Granlund, G. H., and Wiklund, J. (1991) Multidimensional orientation estimation with applications to texture analysis and optical flow, IEEE Trans. Pattern Analysis Machine Intelligence, 8, 775–790.

    Article  Google Scholar 

  59. Kemao, Q. (2007) Two–dimensional windowed Fourier transform for fringe pattern analysis: principles, applica–tions and implementations, Opt. Lasers Eng., 45, 304–317.

    Article  Google Scholar 

  60. Arivazhagan, S., and Ganesan, L. (2003) Texture classifica–tion using wavelet transform, Pattern Recogn. Lett., 24, 1513–1521.

    Article  Google Scholar 

  61. Chang, T., and Kuo, C. C. J. (1993) Texture analysis and classification with tree–structured wavelet transform, IEEE Trans. Image Process., 2, 429–441.

    Article  CAS  PubMed  Google Scholar 

  62. Kistenev, Y. V., Shapovalov, A. V., Borisov, A. V., Vrazhnov, D. A., Nikolaev, V. V., and Nikiforova, O. Y. (2015) Wavelet based de–noising of breath air absorption spectra profiles for improved classification by principal component analy–sis, AIP Conf. Proc., 1688, 030010.

    Article  CAS  Google Scholar 

  63. Khobragade, P., Fan, J., Rupcich, F., Crotty, D. J., and Schmidt, T. G. (2018) Application of fractal dimension for quantifying noise texture in computed tomography images, Med. Phys., 45, 3563–3573.

    Article  Google Scholar 

  64. Depeursinge, A., Al–Kadi, O. S., and Mitchell, J. R. (2017) Biomedical Texture Analysis: Fundamentals, Tools and Challenges, Academic Press, London.

    Google Scholar 

  65. Sankar, D., and Thomas, T. (2010) Fractal features based on differential box counting method for the categorization of digital mammograms, J. Comput. Inform. Syst. Indust. Manag. Appl., 2, 11–19.

    Google Scholar 

  66. Bevk, M., and Kononenko, I. (2002) A statistical approach to texture description of medical images: a preliminary study, Proc. 15th IEEE Symp. Computer–Based Med. Systems, 64, 239–244.

    Google Scholar 

  67. Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973) Textural features for image classification, IEEE Trans. Systems, Man, Cybernetics, SMC–3, 610–621.

    Google Scholar 

  68. Nanni, L., Brahnam, S., Ghidoni, S., Menegatti, E., and Barrier, T. (2013) Different approaches for extracting infor–mation from the co–occurrence matrix, PloS One, 8, e83554.

    Google Scholar 

  69. Farinella, G. M., Moltisanti, M., and Battiato, S. (2014) Classifying food images represented as bag of textons, 2014 IEEE Int. Conf. Image Processing (ICIP), 5212–5216.

    Google Scholar 

  70. Sahiner, B., Chan, H. P., Petrick, N., Wei, D., Helvie, M. A., Adler, D. D., and Goodsitt, M. M. (1996) Classification of mass and normal breast tissue: a convolution neural net–work classifier with spatial domain and texture images, IEEE Trans. Med. Imaging, 15, 598–610.

    Article  CAS  PubMed  Google Scholar 

  71. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., and Thrun, S. (2017) Dermatologist–level classification of skin cancer with deep neural networks, Nature, 542, 115–118.

    Article  CAS  Google Scholar 

  72. Tivive, F. H. C., and Bouzerdoum, A. (2006) Texture clas–sification using convolutional neural networks, 2006 IEEE Region 10 Conf. (TENCON 2006), 1–4.

    Google Scholar 

  73. Anthimopoulos, M., Christodoulidis, S., Ebner, L., and Mouqiakakou, S. (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, IEEE Trans. Med. Imaging, 35, 1207–1216.

    Article  PubMed  Google Scholar 

  74. Kistenev, Y. V., Borisov, A. V., Shapovalov, A. V., and Nikiforova, O. Y. (2015) Analysis of the component composi–tion of exhaled air using laser spectroscopy and canonical cor–relation analysis, Proc. SPIE 9680, 21st Int. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, 9680, 96804C.

    Google Scholar 

  75. Postma, E., Herik, H. J., and Maaten, L. J. P. (2009) Dimensionality reduction: a comparative review, J. Mach. Learn. Res., 10, 1–41.

    Google Scholar 

  76. Nunes, M. A., Prangle, D., Sisson, S. A., and Blum, M. G. B. (2013) A comparative review of dimension reduction methods in approximate Bayesian computation, Stat. Sci., 28, 189–208.

    Article  Google Scholar 

  77. Angryk, R., Martens, P., and Banda, J. M. (2012) Quantitative comparison of linear and non–linear dimen–sionality reduction techniques for solar image archives, Proc. 25th Int. FLAIRS Conf. (FLAIRS’12), pp. 376–381.

    Google Scholar 

  78. Kursa, M. B., and Rudnicki, W. R. (2010) Feature selection with the Boruta package, J. Stat. Soft., 36, 1–13.

    Article  Google Scholar 

  79. Piatetsky–Shapiro, G., Matheus, C., and Frawley, W. (1992) Knowledge discovery in databases: an overview, AI Magazine, 13, 57–70.

    Google Scholar 

  80. Vrazhnov, D. A., Nikolaev, V. V., Shapovalov, A. V., and Sandykova, E. A. (2018) The kernel construction for the biomedical data classification using support vector machine, Proc. SPIE 10614, Int. Conf. Atomic and Molecular Pulsed Lasers XIII, 10614, 106141Y.

    Google Scholar 

  81. Arlot, S., and Celisse, A. (2010) A survey of cross–valida–tion procedures for model selection, Statist. Surv., 4, 40–79.

    Article  Google Scholar 

  82. Hawkins, D. M. (2004) The problem of overfitting, J. Chem. Inf. Comp. Sci., 44, 1–12.

    Article  CAS  Google Scholar 

  83. Boyd, S., and Vandenberghe, L. (2004) Convex Optimi–zation, Cambridge University Press, New York.

    Book  Google Scholar 

  84. Hristu, R., Eftimie, L. G., Stanciu, S. G., Tranca, D. E., Paun, B., Sajin, M., and Stanciu, G. A. (2018) Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms, Biomed. Opt. Express, 9, 3923–3936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, Z., Pouli, D., Sood, D., Sundarakrishnan, A., Hui Mingalone, C. K., Arendt, L. M., Alonzo, C., Quinn, K. P., Kuperwasser, C., Zeng, L., Schnelldorfer, T., Kaplan, D. L., and Georgakoudi, I. (2017) Automated quantifica–tion of three–dimensional organization of fiber–like struc–tures in biological tissues, Biomaterials, 116, 34–47.

    Article  CAS  PubMed  Google Scholar 

  86. Liang, L., Liu, M., and Sun, W. (2017) A deep learning approach to estimate chemically–treated collagenous tissue nonlinear anisotropic stress–strain responses from microscopy images, Acta Biomater., 63, 227–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sacks, M. S. (2000) Biaxial mechanical evaluation of pla–nar biological materials, J. Elasticity, 61, 199–246.

    Article  Google Scholar 

  88. Bekker, V., Zhelzov, A., and Cheslavsky, V. (2015) Visualization of fluorescence lifetime with the many–dimensional TCSPC–method: new prospects in biomedi–cine, Biofotonika, 5/53, 52–66.

    Google Scholar 

  89. Kistenev, Y. V., Nikolaev, V. V., Drozdova, A. K., Ilyasova, E. E., and Sandykova, E. A. (2018) Improvement of the multiphoton fluorescence microscopy images quality using digital filtration, Proc. SPIE 10614, Int. Conf. on Atomic and Molecular Pulsed Lasers XIII, 10614, 106141Q.

    Google Scholar 

  90. Mannan, R., Misra, V., Misra, S. P., Singh, P. A., and Dwivedi, M. (2014) A comparative evaluation of scoring systems for assessing necro–inflammatory activity and fibrosis in liver biopsies of patients with chronic viral hepa–titis, J. Clin. Diagn. Res., 8, FC08–FC12.

    Book  Google Scholar 

  91. Tsipouras, M. G., Giannakeas, N., Tzallas, A. T., Tsianou, Z. E., Manousou, P., Hall, A., Tsoulos, I., and Tsianos, E. (2017) A methodology for automated CPA extraction using liver biopsy image analysis and machine learning tech–niques, Comput. Methods Programs Biomed., 140, 61–68.

    Article  PubMed  Google Scholar 

  92. Judd, N., Smith, J., Jain, M., Mukherjee, M., Icaza, M., Gallagher, R., Szeligowski, R., and Wu, B. (2018) A pilot study for distinguishing chromophobe renal cell carcinoma and oncocytoma using second harmonic generation imaging and convolutional neural network analysis of collagen fibrillar structure, Proc. SPIE 10489, Optical Biopsy XVI: Toward Real–Time Spectroscopic Imaging and Diagnosis, 10489, 1048919.

    Google Scholar 

  93. Kistenev, Y. V., Kuzmin, D. A., Vrazhnov, D. A., and Borisov, A. V. (2016) Classification of patients with broncho–pul–monary diseases based on analysis of absorption spectra of exhaled air samples with SVM and neural network algorithm application, Proc. SPIE 10035, 22nd Int. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, 10035, 1003507.

  94. Kistenev, Y. V., Borisov, A. V., Kuzmin, D. A., Penkova, O. V., Kostyukova, N. Y., and Karapuzikov, A. A. (2017) Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy, J. Biomed. Opt., 22, 17002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kistenev.

Additional information

Russian Text © Yu. V. Kistenev, D. A. Vrazhnov, V. V. Nikolaev, E. A. Sandykova, N. A. Krivova, 2019, published in Uspekhi Biologicheskoi Khimii, 2019, Vol. 59, pp. 219–252.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistenev, Y.V., Vrazhnov, D.A., Nikolaev, V.V. et al. Analysis of Collagen Spatial Structure Using Multiphoton Microscopy and Machine Learning Methods. Biochemistry Moscow 84 (Suppl 1), 108–123 (2019). https://doi.org/10.1134/S0006297919140074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919140074

Keywords

Navigation