Skip to main content
Log in

Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review summarizes the features of cold shock domain (CSD) proteins in the context of their interactions with nucleic acids and describes similarities and differences in the structure of cold shock proteins of prokaryotes and CSD proteins of eukaryotes with special emphasis on the functions related to the RNA/DNA-binding ability of these proteins. The mechanisms and specificity of their interaction with nucleic acids in relation to the growing complexity of protein domain structure are described, as well as various complexes of the mammalian Y-box binding protein 1 (YB-1) with nucleic acids (filaments, globules, toroids). The role of particular amino acid residues in the binding of nitrogenous bases and the sugar-phosphate backbone of nucleic acids is emphasized. The data on the nucleic acid sequences recognized by the Y-box binding proteins are systematized. Post-translational modifications of YB-1, especially its phosphorylation, affect the recognition of specific sequences in the promoter regions of various groups of genes by YB-1 protein. The data on the interaction of Lin28 protein with let-7 miRNAs are summarized. The features of the domain structure of plant CSD proteins and their effect on the interaction with nucleic acids are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid residue

A/P:

domain, alanine/ proline-rich domain

CRS:

cytoplasmic retention site

CSD:

cold shock domain

CSP:

cold shock protein

CTD:

C-terminal domain

dsDNA:

double-stranded DNA

(m)RNP:

(messenger) ribonucleoprotein

NLS:

nuclear localization signal

ssDNA:

single-stranded DNA

ssRNA:

single-stranded RNA

UTR:

untranslated region

YB-1:

Y-box binding protein 1

References

  1. Hudson, W. H., and Ortlund, E. A. (2014) The structure, function and evolution of proteins that bind DNA and RNA, Nat. Rev. Mol. Cell Biol., 15, 749–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horn, G., Hofweber, R., Kremer, W., and Kalbitzer, H. R. (2007) Structure and function of bacterial cold shock proteins, Cell. Mol. Life Sci., 64, 1457–1470.

    Article  CAS  PubMed  Google Scholar 

  3. Maris, C., Dominguez, C., and Allain, F. H. T. (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression, FEBS J., 272, 2118–2131.

    Article  CAS  PubMed  Google Scholar 

  4. Schroder, K., Graumann, P., Schnuchel, A., Holak, T. A., and Marahiel, M. A. (1995) Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif, Mol. Microbiol., 16, 699–708.

    Article  CAS  PubMed  Google Scholar 

  5. Kleene, K. C. (2018) Y-box proteins combine versatile cold shock domains and arginine-rich motifs (ARMs) for pleiotropic functions in RNA biology, Biochem. J., 475, 2769–2784.

    Article  CAS  PubMed  Google Scholar 

  6. Kremer, W., Schuler, B., Harrieder, S., Geyer, M., Gronwald, W., Welker, C., Jaenicke, R., and Kalbitzer, H. R. (2001) Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima, Eur. J. Biochem., 268, 2527–2539.

    Article  CAS  PubMed  Google Scholar 

  7. Schnuchel, A., Wiltscheck, R., Czisch, M., Herrler, M., Willimsky, G., Graumann, P., Marahiel, M. A., and Holak, T. A. (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis, Nature, 364, 169–171.

    Article  CAS  PubMed  Google Scholar 

  8. Jones, P. G., VanBogelen, R. A., and Neidhardt, F. C. (1987) Induction of proteins in response to low temperature in Escherichia coli, J. Bacteriol., 169, 2092–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Etchegaray, J. P., Jones, P. G., and Inouye, M. (1996) Differential thermoregulation of two highly homologous cold-shock genes, CspA and CspB, of Escherichia coli, Genes Cells, 1, 171–178.

    Article  CAS  PubMed  Google Scholar 

  10. Etchegaray, J. P., and Inouye, M. (1999) CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis, J. Bacteriol., 181, 1827–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gualerzi, C. O., Giuliodori, A. M., and Pon, C. L. (2003) Transcriptional and post-transcriptional control of cold-shock genes, J. Mol. Biol., 331, 527–539.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Y., Burkhardt, D. H., Rouskin, S., Li, G. W., Weissman, J. S., and Gross, C. A. (2018) A stress response that monitors and regulates mRNA structure is central to cold shock adaptation, Mol. Cell, 70, 274–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein, J., Pollitt, N. S., and Inouye, M. (1990) Major cold shock protein of Escherichia coli, PNAS, 87, 283–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schindelin, H., Jiang, W., Inouye, M., and Heinemann, U. (1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli, PNAS, 91, 5119–5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graumann, P. L., and Marahiel, M. A. (1998) A superfamily of proteins that contain the cold-shock domain, Trends Biochem. Sci., 23, 286–290.

    Article  CAS  PubMed  Google Scholar 

  16. Phadtare, S., Alsina, J., and Inouye, M. (1999) Cold-shock response and cold-shock proteins, Curr. Opin. Microbiol., 2, 175–180.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, N., Yamanaka, K., and Inouye, M. (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock, J. Bacteriol., 181, 1603–1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bae, W., Phadtare, S., Severinov, K., and Inouye, M. (1999) Characterization of Escherichia coli CspE, whose product negatively regulates transcription of CspA, the gene for the major cold shock protein, Mol. Microbiol., 31, 1429–1441.

    Article  CAS  PubMed  Google Scholar 

  19. Yamanaka, K., Mitani, T., Ogura, T., Niki, H., and Hiraga, S. (1994) Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli, Mol. Microbiol., 13, 301–312.

    Article  CAS  PubMed  Google Scholar 

  20. Xia, B., Ke, H., and Inouye, M. (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli, Mol. Microbiol., 40, 179–188.

    Article  CAS  PubMed  Google Scholar 

  21. Mueller, U., Perl, D., Schmid, F. X., and Heinemann, U. (2000) Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein, J. Mol. Biol., 297, 975–988.

    Article  CAS  PubMed  Google Scholar 

  22. Schindelin, H., Marahiel, M. A., and Heinemann, U. (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein, Nature, 364, 164–168.

    Article  CAS  PubMed  Google Scholar 

  23. Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S. D., Inouye, M., and Montelione, G. T. (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA, PNAS, 91, 5114–5118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, W., Hou, Y., and Inouye, M. (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaper-one, J. Biol. Chem., 272, 196–202.

    Article  CAS  PubMed  Google Scholar 

  25. Phadtare, S., and Inouye, M. (1999) Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli, Mol. Microbiol., 33, 1004–1014.

    Article  CAS  PubMed  Google Scholar 

  26. Lopez, M. M., Yutani, K., and Makhatadze, G. I. (2001) Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template, J. Biol. Chem., 276, 15511–15518.

    Article  CAS  PubMed  Google Scholar 

  27. Phadtare, S., Inouye, M., and Severinov, K. (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells, J. Biol. Chem., 277, 7239–7245.

    Article  CAS  PubMed  Google Scholar 

  28. Rennella, E., Sara, T., Juen, M., Wunderlich, C., Imbert, L., Solyom, Z., Favier, A., Ayala, I., Weinhaupl, K., Shanda, P., Konrat, R., Kreutz., K., and Brutscher, B. (2017) RNA binding and chaperone activity of the E. coli cold-shock protein CspA, Nucleic Acids Res., 45, 4255–4268.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bae, W., Xia, B., Inouye, M., and Severinov, K. (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators, PNAS, 97, 7784–7789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ermolenko, D. N., and Makhatadze, G. I. (2002) Bacterial cold-shock proteins, Cell. Mol. Life Sci., 59, 1902–1913.

    Article  CAS  PubMed  Google Scholar 

  31. Barria, C., Malecki, M., and Arraiano, C. M. (2013) Bacterial adaptation to cold, Microbiology, 159, 2437–2443.

    Article  CAS  PubMed  Google Scholar 

  32. Rudan, M., Schneider, D., Warnecke, T., and Krisko, A. (2015) RNA chaperones buffer deleterious mutations in E. coli, Elife, 4, 1–16.

    Article  Google Scholar 

  33. Yamanaka, K. (1999) Cold shock response in Escherichia coli, J. Mol. Microbiol. Biotechnol., 1, 193–202.

    CAS  PubMed  Google Scholar 

  34. Phadtare, S., and Inouye, M. (2001) Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli, J. Bacteriol., 183, 1205–1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feng, Y., Huang, H., Liao, J., and Cohen, S. N. (2001) Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E, J. Biol. Chem., 276, 31651–31656.

    Article  CAS  PubMed  Google Scholar 

  36. Chang, B. E., Lin, C. Y., and Kuo, C. M. (1999) Molecular cloning of a cold-shock domain protein, zfY1, in zebrafish embryo, BBA Protein Struct. Mol. Enzymol., 1433, 343–349.

    Article  CAS  Google Scholar 

  37. Falsone, F. S., Weichel, M., Crameri, R., Breitenbach, M., and Kungl, A. J. (2002) Unfolding and double-stranded DNA binding of the cold shock protein homologue Clah8 from Cladosporium herbarum, J. Biol. Chem., 277, 16512–16516.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrer, N., Garcia-Espana, A., Jeffers, M., and Pellicer, A. (1999) The unr gene: evolutionary considerations and nucleic acid-binding properties of its long isoform product, DNA Cell Biol., 18, 209–218.

    Article  CAS  PubMed  Google Scholar 

  39. Varadi, M., Zsolyomi, F., Guharoy, M., Tompa, P., and Levy, Y. K. (2015) Functional advantages of conserved intrinsic disorder in RNA-binding proteins, PLoS One, 10, e0139731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kedersha, N., and Anderson, P. (2017) Mammalian stress granules and processing bodies, Methods Enzymol., 431, 61–81.

    Article  CAS  Google Scholar 

  41. Skabkin, M. A., Kiselyova, O. I., Chernov, K. G., Sorokin, A. V., Dubrovin, E. V., Yaminsky, I. V., Vasiliev, V. D., and Ovchinnikov, L. P. (2004) Structural organization of mRNA complexes with major core mRNP protein YB-1, Nucleic Acids Res., 32, 5621–5635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eliseeva, I. A., Kim, E. R., Guryanov, S. G., Ovchinnikov, L. P., and Lyabin, D. N. (2011) Y-box-binding protein 1 (YB-1) and its functions, Biochemistry (Moscow), 76, 1402–1433.

    Article  CAS  Google Scholar 

  43. Miwa, A., Higuchi, T., and Kobayashi, S. (2006) Expression and polysome association of YB-1 in various tissues at different stages in the lifespan of mice, Biochim. Biophys. Acta Gen. Subj., 1760, 1675–1681.

    Article  CAS  Google Scholar 

  44. Murray, M. T., Schiller, D. L., and Franke, W. W. (1992) Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins, PNAS, 89, 11–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berghella, L., De Angelis, L., De Buysscher, T., Mortazavi, A., Biressi, S., Forcales, S., Sirabella, D., Cossu, G., and Wold, B. (2008) A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle, Genes Dev., 22, 2125–2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lima, B., Forrester, M., Hess, D., and Stamler, J. (2014) S-Nitrosylation in cardiovascular signaling, Circ. Res., 106, 633–646.

    Article  CAS  Google Scholar 

  47. Bernstein, H., Lindquist, J., Keilhoff, G., Dobrowolny, H., Brandt, S., Steiner, J., Bogerts, B., and Mertens, P. (2014) Differential distribution of Y-box-binding protein 1 and cold shock domain protein A in developing and adult human brain, Brain Struct. Funct., 220, 2235–2245.

    Article  PubMed  CAS  Google Scholar 

  48. Lu, Z. H., Books, J. T., and Ley, T. J. (2005) YB-1 is important for late-stage embryonic development, optimal cellular stress responses, and the prevention of premature senescence, Mol. Cell. Biol., 25, 4625–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, Z. H., Books, J. T., and Ley, T. J. (2006) Cold shock domain family members YB-1 and MSY4 share essential functions during murine embryogenesis, Mol. Cell. Biol., 26, 8410–8417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lasham, A., Print, C. G., Woolley, A. G., Dunn, S. E., and Braithwaite, A. W. (2013) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem. J., 449, 11–23.

    Article  CAS  PubMed  Google Scholar 

  51. Prabhu, L., Hartley, A. V., Martin, M., Warsame, F., Sun, E., and Lu, T. (2015) Role of post-translational modification of the Y box binding protein 1 in human cancers, Genes Dis., 2, 240–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maurya, P., Mishra, A., Yadav, B., Singh, S., Kumar, P., Chaudhary, A., Srivastava, S., Murugesan, S., and Mani, A. (2017) Role of Y box protein-1 in cancer: as potential bio-marker and novel therapeutic target, J. Cancer, 8, 1900–1907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Morel, C., Kayibanda, B., and Scherrer, K. (1971) Proteins associated with globin messenger RNA in avian erythro-blasts: isolation and comparison with the proteins bound to nuclear messenger-like RNA, FEBS Lett., 18, 84–88.

    Article  CAS  PubMed  Google Scholar 

  54. Blobel, G. (1972) Protein tightly bound to globin mRNA, Biochem. Biophys. Res. Commun., 47, 88–95.

    Article  CAS  PubMed  Google Scholar 

  55. Morel, C., Gander, E. S., Herzberg, M., Dubochet, J., and Scherrer, K. (1973) The duck-globin messenger-ribonu-cleoprotein complex resistance to high ionic strength, particle gel electrophoresis, composition and visualisation by dark-field electron microscopy, Eur. J. Biochem., 36, 455–464.

    Article  CAS  PubMed  Google Scholar 

  56. Didier, D. K., Schiffenbauer, J., Woulfe, S. L., and Zacheis, M. (1988) Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box, PNAS, 85, 7322–7326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hiroshi, S., Toshio, M., Fumio, I., Kunio, Y., and Shunsuke, I. (1988) Two human genes isolated by a novel method encode DNA-binding proteins containing a common region of homology, Gene, 73, 499–507.

    Article  Google Scholar 

  58. Evdokimova, V. M., Wei, C. L., Sitikov, A. S., Simonenko, P. N., Lazarev, O. A., Vasilenko, K. S., Ustinov, V. A., Hershey, J. W., and Ovchinnikov, L. P. (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family, J. Biol. Chem., 270, 3186–3192.

    Article  CAS  PubMed  Google Scholar 

  59. Skabkin, M. A., Lyabin, D. N., and Ovchinnikov, L. P. (2006) Nonspecific and specific interaction of Y-box binding protein 1 (YB-1) with mRNA and posttranscriptional regulation of protein synthesis in animal cells, Mol. Biol., 40, 551–563.

    Article  CAS  Google Scholar 

  60. Yang, X., Zhu, H., Mu, S., Wei, W., Yuan, X., Wang, M., Liu, Y., Hui, J., and Huang, Y. (2019) Crystal structure of a Y-box binding protein 1 (YB-1)-RNA complex reveals key features and residues interacting with RNA, J. Biol. Chem., 294, 10998–11010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guryanov, S. G., Filimonov, V. V., Timchenko, A. A., Melnik, B. S., Kihara, H., Kutyshenko, V. P., Ovchinnikov, L. P., and Semisotnov, G. V. (2013) The major mRNP protein YB-1: structural and association properties in solution, BBA Proteins Proteom., 1834, 559–567.

    Article  CAS  Google Scholar 

  62. Wu, S., Fu, X., Huang, J., Jia, T., Zong, F., Mu, S., Zhu, H., Yan, Y., Qiu, S., Wu, Q., Yan, W., Peng, Y., Chen, J., and Hui, J. (2015) Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme, Nucleic Acids Res., 43, 8516–8528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ivanov, P., Emara, M., Villen, J., Gygi, S. P., and Anderson, P. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation, Mol. Cell, 43, 613–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dimartino, D., Colantoni, A., Ballarino, M., Martone, J., Mariani, D., Danner, J., Bruckmann, A., Meister, G., Morlando, M., and Bozzoni, I. (2018) The long non-coding RNA lnc-31 interacts with Rock1 mRNA and mediates its YB-1-dependent translation, Cell Rep., 23, 733–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lyabin, D. N., Eliseeva, I. A., and Ovchinnikov, L. P. (2014) YB-1 protein: functions and regulation, Wiley Interdiscip. Rev. RNA, 5, 95–110.

    Article  CAS  PubMed  Google Scholar 

  66. Evdokimova, V. M., Kovrigina, E. A., Nashchekin, D. V., Davydova, E. K., Hershey, J. W. B., and Ovchinnikov, L. P. (1998) The major core protein of messenger ribonucleopro-tein particles (p50) promotes initiation of protein biosynthesis in vitro, J. Biol. Chem., 273, 3574–3581.

    Article  CAS  PubMed  Google Scholar 

  67. Ruzanov, P. V., Evdokimova, V. M., Korneeva, N. L., Hershey, J. W. B., and Ovchinnikov, L. P. (1999) Interaction of the universal mRNA-binding protein, p50, with actin: a possible link between mRNA and microfilaments, J. Cell Sci., 112, 3487–3496.

    CAS  PubMed  Google Scholar 

  68. Chernov, K. G., Curmi, P. A., Hamon, L., Mechulam, A., Ovchinnikov, L. P., and Pastre, D. (2008) Atomic force microscopy reveals binding of mRNA to microtubules mediated by two major mRNP proteins YB-1 and PABP, FEBS Lett., 582, 2875–2881.

    Article  CAS  PubMed  Google Scholar 

  69. Jurchott, K., Royer, H., and Centrum, M. (2000) Y-box factor YB-1 is associated with the centrosome during mitosis, Gene Funct. Dis., 1, 57–59.

    Article  Google Scholar 

  70. Davies, A. H., Barrett, I., Hu, K., Stratford, A. L., Freeman, S., Berquin, I. M., Pelech, S., Hieter, P., Maxwell, C., and Dunn, S. E. (2011) YB-1 evokes susceptibility to cancer through cytokinesis failure, mitotic dysfunction and HER2 amplification, Oncogene, 30, 3649–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Somasekharan, S. P., El-Naggar, A., Leprivier, G., Cheng, H., Hajee, S., Grunewald, T., Zhang, F., Ng, T., Delattre, O., Evdokimova, V., Wang, Y., Gleave, M., and Sorensen, P. H. (2015) YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1, J. Cell Biol., 208, 913–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bounedjah, O., Desforges, B., Wu, T., Pioche-Durieu, C., Marco, S., Hamon, L., Curmi, P., Guerquin-Kern, J., Pietrement, O., and Pastre, D. (2014) Free mRNA in excess upon polysome dissociation is a scaffold for protein multimerization to form stress, Nucleic Acids Res., 42, 8678–8691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jurchott, K., Bergmann, S., Stein, U., Walther, W., Janz, M., Manni, I., Piaggio, G., Fietze, E., Dietel, M., and Royer, H. (2003) YB-1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression, J. Biol. Chem., 278, 27988–27996.

    Article  PubMed  CAS  Google Scholar 

  74. Harada, M., Kotake, Y., Ohhata, T., Kitagawa, K., Niida, H., Matsuura, S., Funai, K., Sugimura, H., Suda, T., and Kitagawa, M. (2014) YB-1 promotes transcription of cyclin D1 in human non-small-cell lung cancers, Genes Cells, 19, 504–516.

    Article  CAS  PubMed  Google Scholar 

  75. Pagano, C., Martino, O., Ruggiero, G., Guarino, A., Mueller, N., Siauciunaite, R., Reischl, M., Foulkes, N., Vallone, D., and Calabro, V. (2017) The tumor-associated YB-1 protein: new player in the circadian control of cell proliferation, Oncotarget, 8, 6193–6205.

    Article  PubMed  Google Scholar 

  76. Sorokin, A. V., Selyutina, A. A., Skabkin, M. A., Guryanov, S. G., Nazimov, I. V., Richard, C., Th’Ng, J., Yau, J., Sorensen, P., Ovchinnikov, L. P., and Evdokimova, V. (2005) Proteasome-mediated cleavage of the Y-box-bind-ing protein 1 is linked to DNA-damage stress response, EMBO J., 24, 3602–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sutherland, B., Kucab, J., Wu, J., Lee, C., Cheang, M., Yorida, E., Turbin, D., Dedhar, S., Nelson, C., Pollak, M., Grimes, H., Miller, K., Badve, S., Huntsman, D., Chen, M., Pallen, C., and Dunn, S. (2005) Akt phosphorylates the Y-box binding protein 1 at Ser102 located in the cold shock domain and affects the anchorage-independent growth of breast cancer cells, Oncogene, 24, 4281–4292.

    Article  CAS  PubMed  Google Scholar 

  78. Basaki, Y., Hosoi, F., Oda, Y., Fotovati, A., Maruyama, Y., Oie, S., Ono, M., Izumi, H., Kohno, K., Sakai, K., Shimoyama, T., Nishio, K., and Kuwano, M. (2007) Akt-dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells, Oncogene, 26, 2736–2746.

    Article  CAS  PubMed  Google Scholar 

  79. Bogolyubova, I. O., Lyabin, D. N., Bogolyubov, D. S., and Ovchinnikov, L. P. (2014) Immunocytochemical study of YB-1 nuclear distribution in different cell types, Tissue Cell, 46, 457–461.

    Article  CAS  PubMed  Google Scholar 

  80. Gonda, K., Wudel, J., Nelson, D., Katoku-Kikyo, N., Reed, P., Tamada, H., and Kikyo, N. (2006) Requirement of the protein B23 for nucleolar disassembly induced by the FRGY2a family proteins, J. Biol. Chem., 281, 8153–8160.

    Article  CAS  PubMed  Google Scholar 

  81. Fang, J., Hong, H., Xue, X., Zhu, X., Jiang, L., Qin, M., Liang, H., and Gao, L. (2019) A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus, Cancer Lett., 442, 222–232.

    Article  CAS  PubMed  Google Scholar 

  82. Kljashtorny, V., Nikonov, S., Ovchinnikov, L., Lyabin, D., Volodar, N., Curmi, P., and Manivet, P. (2015) The cold shock domain of YB-1 segregates RNA from DNA by non-bonded interactions, PLoS One, 10, e0130318.

    Article  CAS  Google Scholar 

  83. Minich, W. B., Maidebura, I. P., and Ovchinnikov, L. P. (1993) Purification and characterization of the major 50-kDa repressor protein from cytoplasmic mRNP of rabbit reticulocytes, Eur. J. Biochem., 212, 633–638.

    Article  CAS  PubMed  Google Scholar 

  84. Skabkin, M., Evdokimova, V., Thomas, A., and Ovchinnikov, L. (2001) The major messenger ribonucleo-protein particle protein p50 (YB-1) promotes nucleic acid strand annealing, J. Biol. Chem., 276, 44841–44847.

    Article  CAS  PubMed  Google Scholar 

  85. Hasegawa, S., Doetsch, P., Hamilton, K., Martin, A., Okenquist, S., Lenz, J., and Boss, J. (1991) DNA binding properties of YB-1 and dbpA: binding to double-stranded, single-stranded, and abasic site containing DNAs, Nucleic Acids Res., 19, 4915–4920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaudreault, I., Guay, D., and Lebel, M. (2004) YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins, Nucleic Acids Res., 32, 316–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Izumi, H., Imamura, T., Nagatani, G., Ise, T., Murakami, T., Uramoto, H., Torigoe, T., Ishiguchi, H., Yoshida, Y., Nomoto, M., Okamoto, T., Uchiumi, T., Kuwano, M., Funa, K., and Kohno, K. (2001) Y box-binding protein-1 binds preferentially to single-stranded nucleic acids and exhibits 3′→5′ exonuclease activity, Nucleic Acids Res., 29, 1200–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Swamynathan, S. K., Nambiar, A., and Guntaka, R. V. (1998) Role of single-stranded DNA regions and Y-box proteins in transcriptional regulation of viral and cellular genes, FASEB J., 12, 515–522.

    Article  CAS  PubMed  Google Scholar 

  89. MacDonald, G. H., Itoh-Lindstrom, Y., and Ting, J. (1995) The transcriptional regulatory protein, YB-1, promotes single-stranded regions in the DRA promoter, J. Biol. Chem., 270, 3527–3533.

    Article  CAS  PubMed  Google Scholar 

  90. Zasedateleva, O. A., Krylov, A. S., Prokopenko, D. V., Skabkin, M. A., Ovchinnikov, L. P., Kolchinsky, A., and Mirzabekov, A. D. (2002) Specificity of mammalian Y-box binding protein p50 in interaction with ss and ds DNA analyzed with generic oligonucleotide microchip, J. Mol. Biol., 324, 73–87.

    Article  CAS  PubMed  Google Scholar 

  91. Wang, N., Yamanaka, K., and Inouye, M. (2000) Acquisition of double-stranded DNA-binding ability in a hybrid protein between Escherichia coli CspA and the cold shock domain of human YB-1, Mol. Microbiol., 38, 526–534.

    Article  CAS  PubMed  Google Scholar 

  92. Kretov, D. A., Curmi, P. A., Hamon, L., Abrakhi, S., Desforges, B., Ovchinnikov, L. P., and Pastre, D. (2015) mRNA and DNA selection via protein multimerization: YB-1 as a case study, Nucleic Acids Res., 43, 9457–9473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mateu-regue, A., Christiansen, J., Bagger, F., Hellriegel, C., and Nielsen, F. (2019) Single mRNP analysis by super-resolution microscopy and fluorescence correlation spec-troscopy reveals that small mRNP granules represent mRNA singletons, bioRxiv, 558098, 1–37.

    Google Scholar 

  94. Kretov, D., Clement, M., Lambert, G., Durand, D., Lyabin, D., Bollot, G., Bauvais, C., Samsonova, A., Budkina, K., Maroun, R., Hamon, L., Bouhss, A., Lescop, E., Toma, F., Curmi, P., Maucuer, A., Ovchinnikov, L., and Pastre, D. (2019) YB-1, an abundant core mRNA-binding protein, has the capacity to form an RNA nucleoprotein filament: a structural analysis, Nucleic Acids Res., 47, 3127–3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Prabhu, L., Mundade, R., Wang, B., Wei, H., Hartley, A., Martin, M., McElyea, K., Temm, C., Sandusky, G., Liu, Y., and Lu, T. (2015) Critical role of phosphorylation of serine 165 of YBX1 on the activation of NF-κB in colon cancer, Oncotarget, 6, 29396–29412.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Tanabe, Y., Nagatoishi, S., and Tsumoto, K. (2015) Molecular biosystems thermodynamic characterization of the interaction between the human Y-box binding protein YB-1 and nucleic acids, Mol. Biosyst., 11, 2441–2448.

    Article  CAS  PubMed  Google Scholar 

  97. Von Hacht, A., Seifert, O., Menger, M., Schutze, T., Arora, A., Neubauer, P., Wagner, A., Weise, C., and Kurreck, J. (2014) Identification and characterization of RNA guanine-quadruplex binding proteins, Nucleic Acids Res., 42, 6630–6644.

    Article  CAS  Google Scholar 

  98. Ivanov, P., O’Day, E., Emara, M., Wagner, G., Lieberman, J., and Anderson, P. (2014) G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments, PNAS, 111, 18201–18206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mertens, P., Harendza, S., Pollock, A., and Lovett, D. (1997) Glomerular mesangial cell-specific transactivation of matrix metalloproteinase 2 transcription is mediated by YB-1, J. Biol. Chem., 272, 22905–22912.

    Article  CAS  PubMed  Google Scholar 

  100. En-Nia, A., Yilmaz, E., Klinge, U., Lovett, D., Stefanidis, I., and Mertens, P. (2005) Transcription factor YB-1 mediates DNA polymerase α gene expression, J. Biol. Chem., 280, 7702–7711.

    Article  CAS  PubMed  Google Scholar 

  101. Rauen, T., Frye, B., Wang, J., Raffetseder, U., Alidousty, C., En-Nia, A., Floege, J., and Mertens, P. (2016) Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription, Biochem. Biophys. Res. Commun., 478, 982–987.

    Article  CAS  PubMed  Google Scholar 

  102. Zou, Y., and Chien, K. R. (1995) EFIA/YB-1 is a component of cardiac HF-1A binding activity and positively regulates transcription of the myosin light-chain 2v gene, Mol. Cell. Biol., 15, 2972–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coles, L. S., Diamond, P., Occhiodoro, F., Vadas, M. A., and Shannon, M. F. (2000) An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter, J. Biol. Chem., 275, 14482–14493.

    Article  CAS  PubMed  Google Scholar 

  104. Shi, J., Zheng, B., Li, Y., Sun, Y., Han, A., Zhang, X., Lv, X., Chen, S., and Wen, J. (2013) Novel insight into Y-box binding protein 1 in the regulation of vascular smooth muscle cell proliferation through targeting GC box-dependent genes, FEBS Lett., 587, 1326–1332.

    Article  CAS  PubMed  Google Scholar 

  105. Skabkina, O. V., Lyabin, D. N., Skabkin, M. A., and Ovchinnikov, L. P. (2005) YB-1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining, Mol. Cell. Biol., 25, 3317–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lyabin, D. N., Eliseeva, I. A., Skabkina, O. V., and Ovchinnikov, L. P. (2011) Interplay between Y-box-bind-ing protein 1 (YB-1) and poly(A) binding protein (PABP) in specific regulation of YB-1 mRNA translation, RNA Biol., 8, 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Paranjape, S. M., and Harris, E. (2007) Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects, J. Biol. Chem., 282, 30497–30508.

    Article  CAS  PubMed  Google Scholar 

  108. Wei, W. J., Mu, S. R., Heiner, M., Fu, X., Cao, L. J., Gong, X. F., Bindereif, A., and Hui, J. (2012) YB-1 binds to CAUC motifs and stimulates exon inclusion by enhancing the recruitment of U2AF to weak polypyrimidine tracts, Nucleic Acids Res., 40, 8622–8636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yanshina, D., Kossinova, O., Gopanenko, A., Krasheninina, O., Malygin, A., Venyaminova, A., and Karpova, G. (2017) Structural features of the interaction of the 3′-untranslated region of mRNA containing exoso-mal RNA-specific motifs with YB-1, a potential mediator of mRNA sorting, Biochimie, 144, 134–143.

    Article  PubMed  CAS  Google Scholar 

  110. Ashizuka, M., Fukuda, T., Nakamura, T., Shirasuna, K., Iwai, K., Izumi, H., Kohno, K., Kuwano, M., and Uchiumi, T. (2002) Novel translational control through an iron-responsive element by interaction of multifunctional protein YB-1 and IRP2, Mol. Cell. Biol., 22, 6375–6383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Evdokimova, V., Tognon, C., Ng, T., Ruzanov, P., Melnyk, N., Fink, D., Sorokin, A., Ovchinnikov, L. P., Davicioni, E., Triche, T. J., and Sorensen, P. H. B. (2009) Translational activation of Snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mes-enchymal transition, Cancer Cell, 15, 402–405.

    Article  CAS  PubMed  Google Scholar 

  112. Goodarzi, H., Liu, X., Nguyen, H., Zhang, S., Fish, L., and Tavazoie, S. (2015) Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement, Cell, 161, 790–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ray, D., Kazan, H., Chan, E. T., Castillo, L. P., Chaudhry, S., Talukder, S., Blencowe, B. J., Morris, Q., and Hughes, T. R. (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins, Nat. Biotechnol., 27, 667–670.

    Article  CAS  PubMed  Google Scholar 

  114. Matsumoto, K. I., Abiko, S., and Ariga, H. (2005) Transcription regulatory complex including YB-1 controls expression of mouse matrix metalloproteinase-2 gene in NIH3T3 cells, Biol. Pharm. Bull., 28, 1500–1504.

    Article  CAS  PubMed  Google Scholar 

  115. Gomes, C., Merianda, T., Lee, S., Yoo, S., and Twiss, J. (2014) Molecular determinants of the axonal mRNA tran-scriptome, Dev. Neurobiol., 74, 218–232.

    Article  CAS  PubMed  Google Scholar 

  116. Shurtleff, M., Temoche-Diaz, M., Karfilis, K., Ri, S., and Schekman, R. (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction, Elife, 5, 1–23.

    Article  CAS  Google Scholar 

  117. Evdokimova, V., Ruzanov, P., Imataka, H., Raught, B., Svitkin, Y., Ovchinnikov, L. P., and Sonenberg, N. (2001) The major mRNA-associated protein YB-1 is a potent 5’ cap-dependent mRNA stabilizer, EMBO J., 20, 5491–5502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nekrasov, M., Ivshina, M., Chernov, K., Kovrigina, E., Evdokimova, V., Thomas, A., Hershey, J., and Ovchinnikov, L. P. (2003) The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage, J. Biol. Chem., 278, 13936–13943.

    Article  CAS  PubMed  Google Scholar 

  119. Hayakawa, H., Uchiumi, T., Fukuda, T., Ashizuka, M., Kohno, K., Kuwano, M., and Sekiguchi, M. (2002) Binding capacity of human YB-1 protein for RNA containing 8-oxoguanine, Biochemistry, 41, 12739–12744.

    Article  PubMed  CAS  Google Scholar 

  120. Chen, X., Li, A., Sun, B., Yang, Y., Han, Y., Yuan, X., Chen, R., Wei, W., Liu, Y., Gao, C., Chen, Y., Zhang, M., Ma, X., Liu, Z., Luo, J., Lyu, C., Wang, H., Ma, J., Zhao, Y., Zhou, F., Huang, Y., Xie, D., and Yang, Y. (2019) 5-Methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs, Nat. Cell Biol, 21, 978–990.

    Article  CAS  PubMed  Google Scholar 

  121. Yang, Y., Wang, L., Han, X., Yang, W, Zhang, M., Ma, H., Sun, B., Li, A., Xia, J., Chen, J., Heng, J., Wu, B., Chen, Y, Xu, J., Yang, X., Yao, H., Sun, J., Lyu, C., Wang, H., Huang, Y., Sun, Y., Zhao, Y., Meng, A., Ma, J., Liu, F., and Yang, Y. (2019) RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay, Mol. Cell, 75, 1–15.

    Article  CAS  Google Scholar 

  122. Coles, L. S., Lambrusco, L., Burrows, J., Hunter, J., Diamond, P., Bert, A. G., Vadas, M. A., and Goodall, G. J. (2005). Phosphorylation of cold shock domain/Y-box proteins by ERK2 and GSK3P and repression of the human VEGF promoter, FEBS Lett, 579, 5372–5378.

    Article  CAS  PubMed  Google Scholar 

  123. Evdokimova, V., Ruzanov, P., Anglesio, M., Sorokin, A., Ovchinnikov, L., Buckley, J., Triche, T., Sonenberg, N., and Sorensen, P. (2006) Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species, Mol. Cell. Biol., 26, 277–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, J., Gibbert, L., Djudjaj, S., Alidousty C., Rauen, T, Kunter, U., Rembiak, A., Enders, D., Jankowski, V., Braun, G., Floege, J., Ostendorf, T., and Raffetseder, U. (2016) Therapeutic nuclear shuttling of YB-1 reduces renal damage and fibrosis, Kidney Int., 90, 1226–1237.

    Article  CAS  PubMed  Google Scholar 

  125. Martin, M., Hua, L., Wang, B., Wei, H., Prabhu, L., Hartley, A, V, Jiang, G., Liu, Y., and Lu, T. (2017) Novel serine 176 phosphorylation of YBX1 activates NF-kB in colon cancer, J. Biol. Chem., 292, 3433–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Alidousty, C., Rauen, T., Hanssen, L., Wang, Q., Alampour-Rajabi, S., Mertens, P. R., Bernhagen, J., Floege, J., Ostendorf, T., and Raffetseder, U. (2014) Calcineurin-mediated YB-1 dephosphorylation regulates CCL5 expression during monocyte differentiation, J. Biol. Chem., 289, 21401–21412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Liu, Q., Tao, T., Liu, F., Ni, R., Lu, C., and Shen, A. (2016) Hyper-O-GlcNAcylation of YB-1 affects Ser102 phosphorylation and promotes cell proliferation in hepatocellular carcinoma, Exp. Cell Res., 349, 230–238.

    Article  CAS  PubMed  Google Scholar 

  128. Alemasova, E., Pestryakov, P., Sukhanova, M., Kretov, D., Moor, N., Curmi, P., Ovchinnikov, L., and Lavrik, O. (2015) Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1, Biochimie, 119, 36–44.

    Article  CAS  PubMed  Google Scholar 

  129. Alemasova, E. E., and Lavrik, O. I. (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins, Nucleic Acids Res., 47, 3811–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bobkova, N. V., Lyabin, D. N., Medvinskaya, N. I., Samokhin, A. N., Nekrasov, P. V., Nesterova, I. V., Aleksandrova, I. Y., Tatarnikova, O. G., Bobylev, A. G., Vikhlyantsev, I. M., Kukharsky, M. S., Ustyugov, A. A., Polyakov, D. N., Eliseeva, I. A., Kretov, D. A., Guryanov, S. G., and Ovchinnikov, L. P. (2015) The Y-box binding protein 1 suppresses Alzheimer’s disease progression in two animal models, PLoS One, 10, e0138867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tsialikas, J., and Romer-Seibert, J. (2015) LIN28: roles and regulation in development and beyond, Development, 142, 2397–2404.

    Article  CAS  PubMed  Google Scholar 

  132. Piskounova, E., Polytarchou, C., Thornton, J. E., LaPierre, R. J., Pothoulakis, C., Hagan, J. P., Iliopoulos, D., and Gregory, R. I. (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms, Cell, 147, 1066–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, L., Nam, Y., Lee, A. K., Yu, C., Roth, K., Chen, C., Ransey, E. M., and Sliz, P. (2017) LIN28 zinc knuckle domain is required and sufficient to induce let-7 oligouridylation, Cell Rep., 18, 2664–2675.

    Article  CAS  PubMed  Google Scholar 

  134. Hafner, M., Max, K. E., Bandaru, P., Morozov, P., Gerstberger, S., Brown, M., Molina, H., and Tuschl, T. (2013) Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition, RNA, 19, 613–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shinoda, G., Shyh-Chang, N., Soysa, T. Y. D., Zhu, H., Seligson, M. T., Shah, S. P., Abo-Sido, N., Yabuuchi, A., Hagan, J. P., Gregory, R. I., Asara, J. M., Cantley, L. C., Moss, E. G., and Daley, G. Q. (2013) Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism, Stem Cells, 31, 1563–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells, Science, 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, J., Ratanasirintrawoot, S., Chandrasekaran, S., Wu, Z., Ficarro, S. B., Yu, C., Ross, C. A., Cacchiarelli, D., Xia, Q., Seligson, M., Shinoda, G., Xie, W., Cahan, P., Wang, L., Ng, S.-C., Tintara, S., Trapnell, C., Onder, T., Loh, Y.-H., Mikkelsen, T., Sliz, P., Teitell, M., Asara, J. M., Marto, J. A., Li, H., Collins, J., and Daley, G. Q. (2016) LIN28 regulates stem cell metabolism and conver sion to primed pluripotency, Cell Stem Cell, 19, 66–80.

    Article  CAS  PubMed  Google Scholar 

  138. Hamano, R., Miyata, H., Yamasaki, M., Sugimura, K., Tanaka, K., Kurokawa, Y., Nakajima, K., Takiguchi, S., Fujiwara, Y., Mori, M., and Doki, Y. (2012) High expression of Lin28 is associated with tumour aggressiveness and poor prognosis of patients in oesophagus cancer, Brit. J. Cancer, 106, 1415–1423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, T., Wang, G., Hao, D., Liu, X., Wang, D., Ning, N., and Li, X. (2015) Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer, Mol. Cancer, 14, 125.

  140. Jiang, S., and Baltimore, D. (2016) RNA-binding protein Lin28 in cancer and immunity, Cancer Lett., 375, 108–113.

    Article  CAS  PubMed  Google Scholar 

  141. Zhu, H., Shyh-Chang, N., Segre, A. V., Shinoda, G., Shah, S. P., Einhorn, W. S., Takeuchi, A., Engreitz, J. M., Hagan, J. P., Kharas, M. G., Urbach, A., Thornton, J. E., Triboulet, R., Gregory, R. I., DIAGRAM Consortium, MAGIC Investigators, Altshuler, D., and Daley, G. Q. (2011) The Lin28/let-7 axis regulates glucose metabolism, Cell, 147, 81–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Docherty, C. K., Salt, I. P., and Mercer, J. R. (2016) Lin28A induces energetic switching to glycolytic metabolism in human embryonic kidney cells, Stem Cell Res. Ther., 7, 78.

  143. Ambros, V., and Horvitz, H. R. (1984) Heterochronic mutants of the nematode Caenorhabditis elegans, Science, 226, 409–416.

    Article  CAS  PubMed  Google Scholar 

  144. Moss, E. G., Lee, R. C., and Ambros, V. (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA, Cell, 88, 637–646.

    Article  CAS  PubMed  Google Scholar 

  145. Yermalovich, A. V., Osborne, J. K., Sousa, P., Han, A., Kinney, M. A., Chen, M. J., Robinton, D. A., Montie, H., Pearson, D. S., Wilson, S. B., Combes, A. N., Little, M. H., and Daley, G. Q. (2019) Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis, Nat. Commun., 10, 168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Worringer, K. A., Rand, T. A., Hayashi, Y., Sami, S., Takahashi, K., Tanabe, K., Narita, M., Srivastava, D., and Yamanaka, S. (2014) The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes, Cell Stem Cell, 14, 40–52.

    Article  CAS  PubMed  Google Scholar 

  147. Newman, M. A., Thomson, J. M., and Hammond, S. M. (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA, 14, 1539–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wiswanathan, S. R., Daley, G. Q., and Gregory, R. I. (2008) Selective blockade of microRNA processing by Lin28, Science, 320, 97–100.

    Article  CAS  Google Scholar 

  149. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E. E., Nitsch, R., and Wulczyn, F. G. (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment, Nat. Cell Biol., 10, 987–993.

    Article  CAS  PubMed  Google Scholar 

  150. Heo, I., Joo, C., Cho, J., Ha, M., Han, J., and Kim, V. N. (2008) Lin28 mediates the terminal uridylation of let-7 precursor microRNA, Mol. Cell, 32, 276–284.

    Article  CAS  PubMed  Google Scholar 

  151. Heo, I., Joo, C., Kim, Y. K., Ha, M., Yoon, M. J., Cho, J., and Kim, V. N. (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation, Cell, 138, 696–708.

    Article  CAS  PubMed  Google Scholar 

  152. Chang, H. M., Triboulet, R., Thornton, J. E., and Gregory, R. I. (2013) A role for the Perlman syndrome exonuclease Dis312 in the Lin28-let-7 pathway, Nature, 497, 244–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nam, Y., Chen, C., Gregory, R. I., Chou, J. J., and Sliz, P. (2011) Molecular basis for interaction of let-7 microRNAs with Lin28, Cell, 147, 1080–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Mayr, F., Schutz, A., Doge, N., and Heinemann, U. (2012) The Lin28 cold-shock domain remodels pre-let-7 microRNA, Nucleic Acids Res., 40, 7492–7506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Triboulet, R., Pirouz, M., and Gregory, R. I. (2015) A single let-7 microRNA bypasses LIN28-mediated repression, Cell Rep., 13, 260–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, C., and Darnell, R. B. (2011) Mapping in vivo pro-tein-RNA interactions at single-nucleotide resolution from HITS-CLIP data, Nat. Biotechnol., 29, 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Weyn-Vanhentenryck, S. M., Mele, A., Yan, Q., Sun, S., Farny, N., Zhang, Z., Xue, C., Herre, M., Silver, P. A., Zhang, M. Q., Krainer, A. R., Darnell, R. B., and Zhang, C. (2014) HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism, Cell Rep., 6, 1139–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shah, A., Qian, Y., Weyn-Vanhentenryck, S. M., and Zhang, C. (2016) CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data, Bioinformatics, 33, 566–567.

    PubMed Central  Google Scholar 

  159. Cho, J., Chang, H., Kwon, S. C., Kim, B., Kim, Y., Choe, J., Ha, M., Kim, K. Y., and Kim, V. N. (2012) LIN28A is a suppressor of ER-associated translation in embryonic stem cells, Cell, 151, 765–777.

    Article  CAS  PubMed  Google Scholar 

  160. Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., Stanton, R., Rigo, F., Guttman, M., and Yeo, G. W. (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP), Nat. Methods, 13, 508–514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Ustianenko, D., Chiu, H. S., Treiber, T., Weyn-Vanhentenryck, S. M., Treiber, N., Meister, G., Sumazin, P., and Zhang, C. (2018) LIN28 selectively modulates a subclass of let-7 microRNAs, Mol. Cell, 71, 271–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nowak, J. S., Choudhury, N. R., de Lima Alves, F., Rappsilber, J., and Michlewski, G. (2014) Lin28a regulates neuronal differentiation and controls miR-9 production, Nat. Commun., 5, 3687.

    Article  PubMed  CAS  Google Scholar 

  163. Nowak, J. S., Hobor, F., Velasco, A. D. R., Choudhury, N. R., Heikel, G., Kerr, A., Ramos, A., and Michlewski, G. (2017) Lin28a uses distinct mechanisms of binding to RNA and affects miRNA levels positively and negatively, RNA, 23, 317–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tan, F. E., Sathe, S., Wheeler, E. C., Nussbacher, J. K., Peter, S., and Yeo, G. W. (2019) A transcriptome-wide translational program defined by LIN28B expression level, Mol. Cell, 73, 304–313.

    Article  CAS  PubMed  Google Scholar 

  165. Wilbert, M. L., Huelga, S. C., Kapeli, K., Stark, T. J., Liang, T. Y., Chen, S. X., Yan, B. Y., Nathanson, J. L., Hutt, K. R., Lovci, M. T., Kazan, H., Vu, A. Q., Massirer, K. B., Morris, Q., Hoon, S., and Yeo, G. W. (2012) LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance, Mol. Cell, 48, 195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Graf, R., Munschauer, M., Mastrobuoni, G., Mayr, F., Heinemann, U., Kempa, S., Rajewsky, N., and Landthaler, M. (2013) Identification of LIN28B-bound mRNAs reveals features of target recognition and regulation, RNA Biol., 10, 1146–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hafner, M., Max, K. E., Bandaru, P., Morozov, P., Gerstberger, S., Brown, M., Molina, H., and Tuschl, T. (2013) Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition, RNA, 19, 613–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Peng, S., Chen, L. L., Lei, X. X., Yang, L., Lin, H., Carmichael, G. G., and Huang, Y. (2011) Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells, Stem Cells, 29, 496–504.

    Article  CAS  PubMed  Google Scholar 

  169. Shyh-Chang, N., and Daley, G. Q. (2013) Lin28: primal regulator of growth and metabolism in stem cells, Cell Stem Cell, 12, 395–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Rigbolt, K. T., Prokhorova, T. A., Akimov, V., Henningsen, J., Johansen, P. T., Kratchmarova, I., Kassem, M., Mann, M., Olsen, J. V., and Blagoev, B. (2011) System-wide temporal characterization of the proteome and phosphopro-teome of human embryonic stem cell differentiation, Sci. Signal., 4, rs3-rs3.

    Article  PubMed  Google Scholar 

  171. Van Hoof, D., Munoz, J., Braam, S. R., Pinkse, M. W., Linding, R., Heck, A. J., Mummery, C. L., and Krijgsveld, J. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells, Cell Stem Cell, 5, 214–226.

    Article  PubMed  CAS  Google Scholar 

  172. Tsanov, K. M., Pearson, D. S., Wu, Z., Han, A., Triboulet, R., Seligson, M. T., Powers, J. T., Osborne, J. K., Kane, S., Gygi, S. P., Gregory, R. I., and Daley, G. Q. (2017) LIN28 phosphorylation by MAPK/ERK couples signaling to the post-transcriptional control of pluripotency, Nat. Cell Biol., 19, 60–67.

    Article  CAS  PubMed  Google Scholar 

  173. Zeng, Y., Yao, B., Shin, J., Lin, L., Kim, N., Song, Q., Liu, S., Su, Y., Guo, J. U., Huang, L., Wan, J., Wu, H., Qian, J., Cheng, X., Zhu, H., Ming, G.-L., Jin, P., and Song, H. (2016) Lin28A binds active promoters and recruits Tet1 to regulate gene expression, Mol. Cell, 61, 153–160.

    Article  CAS  PubMed  Google Scholar 

  174. Karlson, D., and Imai, R. (2003) Conservation of the cold shock domain protein family in plants, Plant Physiol., 131, 12–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sasaki, K., and Imai, R. (2012) Pleiotropic roles of cold shock domain proteins in plants, Front. Plant Sci., 2, 116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Karlson, D. (2009) Plant cold-shock domain proteins: on the tip of an iceberg, in Plant Cold Hardiness: From the Laboratory to the Field, CABI, Cambridge, pp. 43–54.

    Chapter  Google Scholar 

  177. Taranov, V. V., Zlobin, N. E., Evlakov, K. I., Shamustakimova, A. O., and Babakov, A. V. (2018) Contribution of Eutrema salsugineum cold shock domain structure to the interaction with RNA, Biochemistry (Moscow), 83, 1369–1379.

    Article  CAS  Google Scholar 

  178. Fusaro, A. F., Bocca, S. N., Ramos, R. L. B., Barroco, R. M., Magioli, C., Jorge, V. C., Coutinho, T. C., Rangel-Lima, C. M., De Rycke, R., Inze, D., Engler, G., and Sachetto-Martins, G. (2007) AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development, Planta, 225, 1339–1351.

    Article  CAS  PubMed  Google Scholar 

  179. Yang, Y., and Karlson, D. (2013) AtCSP1 regulates germination timing promoted by low temperature, FEBS Lett., 587, 2186–2192.

    Article  CAS  PubMed  Google Scholar 

  180. Kim, M. H., Sasaki, K., and Imai, R. (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana, J. Biol. Chem., 284, 23454–23460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Taranov, V. V., Berdnikova, M. V., Babakov, A. V., Nosov, A. V., and Galkin, A. V. (2010) Cold shock domain proteins in the extremophyte Thellungiella salsuginea (salt cress): gene structure and differential response to cold, Mol. Biol. (Moscow), 44, 787–794.

    Article  CAS  Google Scholar 

  182. Radkova, M., Vitamvas, P., Sasaki, K., and Imai, R. (2014) Development- and cold-regulated accumulation of cold shock domain proteins in wheat, Plant Physiol. Bioch., 77, 44–48.

    Article  CAS  Google Scholar 

  183. Chaikam, V., and Karlson, D. (2008) Functional characterization of two cold shock domain proteins from Oryza sativa, Plant Cell Environ., 31, 995–1006.

    Article  CAS  PubMed  Google Scholar 

  184. Nakaminami, K., Hill, K., Perry, S. E., Sentoku, N., Long, J. A., and Karlson, D. T. (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development, J. Exp. Bot., 60, 1047–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, Y., and Karlson, D. T. (2011) Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis, J. Exp. Bot., 62, 2079–2091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Nakaminami, K., Karlson, D. T., and Imai, R. (2006) Functional conservation of cold shock domains in bacteria and higher plants, PNAS, 103, 10122–10127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Park, S. J., Kwak, K. J., Oh, T. R., Kim, Y. O., and Kang, H. (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions, Plant Cell Physiol., 50, 869–878.

    Article  CAS  PubMed  Google Scholar 

  188. Sasaki, K., Kim, M. H., and Imai, R. (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is an RNA chap-erone that is regulated by cold and developmental signals, Biochem. Biophys. Res. Commun., 364, 633–638.

    Article  CAS  PubMed  Google Scholar 

  189. Zlobin, N., Evlakov, K., Alekseev, Y., Blagodatskikh, K., Babakov, A., and Taranov, V. (2016) High DNA melting activity of extremophyte Eutrema salsugineum cold shock domain proteins EsCSDP1 and EsCSDP3, Biochem. Biophys. Rep., 5, 502–508.

    PubMed  PubMed Central  Google Scholar 

  190. Zlobin, N., Evlakov, K., Tikhonova, O., Babakov, A., and Taranov, V. (2018) RNA melting and RNA chaperone activities of plant cold shock domain proteins are not correlated, RNA Biol., 15, 1040–1046.

    PubMed  PubMed Central  Google Scholar 

  191. Zlobin, N. E. (2019) The Interaction of Proteins with the Cold Shock Domain of the Extremophyte Plant Eutrema sal-sugineum with Nucleic Acids: PhD (in biology) dissertation [in Russian], All-Russian Research Institute of Agricultural Biotechnology, Moscow.

    Google Scholar 

  192. Juntawong, P., Sorenson, R., and Bailey-Serres, J. (2013) Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana, Plant J., 74, 1016–1028.

    Article  CAS  PubMed  Google Scholar 

  193. Kawaguchi, R., and Bailey-Serres, J. (2005) mRNA sequence features that contribute to translational regulation in Arabidopsis, Nucleic Acids Res., 33, 955–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Puckette, M., Iyer, N. J., Tang, Y., Dai, X. B., Zhao, P., and Mahalingam, R. (2012) Differential mRNA translation in Medicago truncatula accessions with contrasting responses to ozone-induced oxidative stress, Mol. Plant, 5, 187–204.

    Article  CAS  PubMed  Google Scholar 

  195. Li, C., Sako, Y., Imai, A., Nishiyama, T., Thompson, K., Kubo, M., Hiwatashi, Y., Kabeya, Y., Karlson, D., Wu, S., Ishikawa, M., Murata, T., Benfey, P., Sato, Y., Tamada, Y., and Hasebe, M. (2017) A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens, Nat. Commun., 8, 14242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements.

The authors thank E. V. Serebrova for the help in the manuscript preparation.

Funding

Funding. This study was performed within the State Assignment no. 0574-2019-0001 and supported in part (section “YB proteins”) by the Russian Science Foundation (project 19-74-20129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ovchinnikov.

Ethics declarations

Compliance with ethical norms. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest.

Russian Text © The Author(s), 2020, published in Uspekhi Biologicheskoi Khimii, 2020, Vol. 60, pp. 3–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budkina, K.S., Zlobin, N.E., Kononova, S.V. et al. Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids. Biochemistry Moscow 85 (Suppl 1), 1–19 (2020). https://doi.org/10.1134/S0006297920140011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920140011

Keywords

Navigation