Skip to main content
Log in

Association of genes involved in nicotine and tobacco smoke toxicant metabolism (CHRNA3/5, CYP2A6, and NQO1) and DNA repair (XRCC1, XRCC3, XPC, and XPA) with chronic obstructive pulmonary disease

  • Genomics. Transcriptomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Polymorphisms of the CHRNA5/A3, CYP2A6, NQO1, XPC, XRCC1, CRCC3, XPD, and XPA genes were tested for association with the development and progression of chronic obstructive pulmonary disease (COPD) in ethnic Tatars. CHRNA5 (rs16969968) (P = 0.0001, OR = 2.24) and CHRNA3 (rs1051730) (P = 0.0001, OR = 2.72) polymorphisms were associated with COPD development in the recessive model. The nondeletion variant of CYP2A6 (del) was associated with COPD risk (P = 0.00001, OR = 2.77). NQO1 (rs113341), XRCC1 (rs25487), XRCC3 (rs86539), XPC (rs2228001), and XPA (rs1800975) were associated with COPD in the additive model (P = 0.000001, OR = 2.67; P = 0.00001, OR = 0.51; P = 0.0003, OR = 1.76; P = 0.0004, OR = 0.54; and P = 0.007, OR = 0.74, respectively). A gene-by-environment interaction was observed for XPA (rs1800975) and the smoking status (P interact = 0.002), and the rs16969968 and rs1051730 polymorphisms of the CHRNA3/5 gene cluster showed an association with COPD only in smokers. Carriers of the CYP2A6 deletion (CYP2A6*4) had a lower smoking index (P = 0.0019). XRCC3 (rs861539) genotype TT was characterized by lower indices of pulmonary function, including vital capacity (VC) (P = 0.0487), forced vital capacity (FVC) (P = 0.0032), and forced expiratory volume in 1 second (FEV1) (P = 0.02). FVC was found to depend on the genotype at XPA (rs1800975) (P = 0.0028).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GWAS:

genome-wide association study

MAF:

minor allele frequency

GOLD:

Global Initiative for Chronic Obstructive Lung Disease

NQO1:

NAD(P)H-quinone oxidoreductase 1

COPD:

chronic obstructive pulmonary disease

VC:

vital capacity

FVC:

forced vital capacity

ROS:

reactive oxygen species

FEV1:

forced expiratory volume in 1 second

References

  1. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease, Global Initiative for Chronic Obstructive Lung Disease (GOLD) (Updated 2011). http://www.goldcopd.org/.

  2. Kim W.J., Lim M.N., Hong Y., Silverman E.K., Lee J.H., Jung B.H., Ra S.W., Choi H.S., Jung Y.J., Park Y.B., Park M.J., Lee S.W., Lee J.S., Oh Y.M., Lee S.D. 2014. Association of Lung function genes with chronic obstructive pulmonary disease. Lung. 192(4), 473–480.

    Article  CAS  PubMed  Google Scholar 

  3. Pillai S.G., Ge D., Zhu G., Kong X., Shianna K.V., Need A.C., Feng S., Hersh C.P., Bakke P., Gulsvik A., Ruppert A., Lødrup Carlsen K.C., Roses A., Anderson W., Rennard S.I., Lomas D.A., Silverman E.K., Goldstein D.B., ICGN Investigators. 2009. A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci. PLoS Genet. 5, e1000421.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cho M.H., Castaldi P.J., Wan E.S., Siedlinski M., Hersh C.P., Demeo D.L., Himes B.E., Sylvia J.S., Klanderman B.J., Ziniti J.P., Lange C., Litonjua A.A., Sparrow D., Regan E.A., Make B.J., Hokanson J.E., Murray T., Hetmanski J.B., Pillai S.G., Kong X., Anderson W.H., Tal-Singer R., Lomas D.A., Coxson H.O., Edwards L.D., MacNee W., Vestbo J., Yates J.C., Agusti A., Calverley P.M., Celli B., Crim C., Rennard S., Wouters E., Bakke P., Gulsvik A., Crapo J.D., Beaty T.H., Silverman E.K., ICGN Investigators; ECLIPSE Investigators; COPDGene Investigators. 2012. A genomewide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum. Mol. Genet. 21, 947–957.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Siedlinski M., Cho M.H., Bakke P., Gulsvik A., Lomas D.A., Anderson W., Kong X., Rennard S.I., Beaty T.H., Hokanson J.E., Crapo J.D., Silverman E.K.; COPDGene Investigators; ECLIPSE Investigators. 2011. Genome-wide association study of smoking behaviours in patients with COPD. Thorax. 66, 894–902.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Zhang J., Summah H., Zhu Y.G., Qu J.M. 2011. Nicotinic acetylcholine receptor variants associated with susceptibility to chronic obstructive pulmonary disease: A meta-analysis. Respir. Res. 12, 158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhou H., Yang J., Li D., Xiao J., Wang B., Wang L., Ma C., Xu S., Ou X., Feng Y. 2012. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J. Hum. Genet. 57, 738–746.

    Article  CAS  PubMed  Google Scholar 

  8. Wu C., Hu Z., Yu D., Huang L., Jin G., Liang J., Guo H., Tan W., Zhang M., Qian J., Lu D., Wu T., Lin D., Shen H. 2009. Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res. 69, 5065–5072.

    Article  CAS  PubMed  Google Scholar 

  9. Lee J.Y., Yoo S.S., Kang H.G., Jin G., Bae E.Y., Choi Y.Y., Choi J.E., Jeon H.S., Lee J., Lee S.Y., Cha S.I., Kim C.H., Park J.Y. 2012. A functional polymorphism in the CHRNA3 gene and risk of chronic obstructive pulmonary disease in a Korean population. J. Korean Med. Sci. 27, 1536–1540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yang L., Qiu F., Lu X., Huang D., Ma G., Guo Y., Hu M., Zhou Y., Pan M., Tan Y., Zhong H., Ji W., Wei Q., Ran P., Zhong N., Zhou Y., Lu J. 2012. Functional polymorphisms of CHRNA3 predict risks of chronic obstructive pulmonary disease and lung cancer in Chinese. PLoS ONE. 7, e46071.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Nunoya K., Yokoi T., Kimura K., Inoue K., Kodama T., Funayama M., Nagashima K., Funae Y., Green C., Kinoshita M., Kamataki T. 1998. A new deleted allele in the human cytochrome P450 2A6 (CYP2A6) gene found in individuals showing poor metabolic capacity to coumarin and (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin4-one hydrochloride (SM-12502). Pharmacogenetics. 8, 239–249.

    Article  CAS  PubMed  Google Scholar 

  12. Gyamfi M.A., Fujieda M., Kiyotani K., Yamazaki H., Kamataki T. 2005. High prevalence of cytochrome P450 2A6*1A alleles in a black African population of Ghana. Eur. J. Clin. Pharmacol. 60, 855–857.

    Article  CAS  PubMed  Google Scholar 

  13. Liu Z.B., Shu J., Wang L.P., Jin C., Lou Z.X. 2013. Cytochrome P450 2A6 deletion polymorphism and risk of lung cancer: A meta-analysis. Mol. Biol. Rep. 40, 5255–5259.

    Article  CAS  PubMed  Google Scholar 

  14. Blake D.J., Singh A., Kombairaju P., Malhotra D., Mariani T.J., Tuder R.M., Gabrielson E., Biswal S. 2010. Deletion of Keap1 in the lung attenuates acute cigarette smoke-induced oxidative stress and inflammation. Am. J. Respir. Cell Mol. Biol. 42, 524–536.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Potts-Kant E.N., Li Z., Tighe R.M., Lindsey J.Y., Frush B.W., Foster W.M., Hollingsworth J.W. 2012. NAD(P)H: Quinone oxidoreductase 1 protects lungs from oxidant-induced emphysema in mice. Free Radic. Biol. Med. 52, 705–715.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Deslee G., Adair-Kirk T.L., Betsuyaku T., Woods J.C., Moore C.H., Gierada D.S., Conradi S.H., Atkinson J.J., Toennies H.M., Battaile J.T., Kobayashi D.K., Patterson G.A., Holtzman M.J., Pierce R.A. 2010. Cigarette smoke induces nucleic acid oxidation in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 43, 576–584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shi Y., Cao J., Gao J., Zheng L., Goodwin A., An C.H., Patel A., Lee J.S., Duncan S.R., Kaminski N., Pandit K.V., Rosas I.O., Choi A.M., Morse D. 2012. Retinoic acidrelated orphan receptor-α is induced in the setting of DNA damage and promotes pulmonary emphysema. Am. J. Respir. Crit. Care Med. 186, 412–419.

    Article  CAS  PubMed  Google Scholar 

  18. Vodicka P., Kumar R., Stetina R., Sanyal S., Soucek P., Haufroid V., Dusinska M., Kuricova M., Zamecnikova M., Musak L., Buchancova J., Norppa H., Hirvonen A., Vodickova L. Naccarati A., Matousu Z., Hemminki K. 2004. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 25, 757–763.

    Article  CAS  PubMed  Google Scholar 

  19. Matullo G., Dunning A.M., Guarrera S., Baynes C., Polidoro S., Garte S., Autrup H., Malaveille C., Peluso M., Airoldi L., Veglia F., Gormally E., Hoek G., Krzyzanowski M., Overvad K., Raaschou-Nielsen O., Clavel-Chapelon F., Linseisen J., Boeing H., Trichopoulou A., Palli D., Krogh V., Tumino R., Panico S., Bueno-de-Mesquita H.B., Peeters P.H., Lund E., Pera G., Martinez C., Dorronsoro M., Barricarte A., Tormo M.J., Quiros J.R., Day N.E., Key T.J., Saracci R., Kaaks R., Riboli E., Vineis P. 2006. DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis. 27, 997–1007.

    Article  CAS  PubMed  Google Scholar 

  20. Siganaki M., Koutsopoulos A.V., Neofytou E., Vlachaki E., Psarrou M., Soulitzis N., Pentilas N., Schiza S., Siafakas N.M., Tzortzaki E.G. 2010. Deregulation of apoptosis mediators p53 and bcl2 in lung tissue of COPD patients. Respir. Res. 11, 46.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Savale L., Chaouat A., Bastuji-Garin S., Marcos E., Boyer L., Maitre B., Sarni M., Housset B., Weitzenblum E., Matrat M., Le Corvoisier P., Rideau D., Boczkowski J., Dubois-Randé J.L., Chouaid C., Adnot S. 2009. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 179, 566–571.

    Article  CAS  PubMed  Google Scholar 

  22. Xie J., Yang S., Xu Y., Zhang Z. 2009. XRCC1 Arg194Trp polymorphism and risk of chronic obstructive pulmonary disease. J. Huazhong Univ. Sci. Technol. Med. Sci. 29, 551–556.

    Article  CAS  PubMed  Google Scholar 

  23. da Silva A.L., da Rosa H.T., Karnopp T.E., Charlier C.F., Ellwanger J.H., Moura D.J., Possuelo L.G., Valim A.R., Guecheva T.N., Henriques J.A. 2013. Evaluation of DNA damage in COPD patients and its correlation with polymorphisms in repair genes. BMC Med. Genet. 14, 93.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yang S.F., Xu Y.J., Xie J.G., Zhang Z.X. 2009. GG1 Ser326Cys and XRCC1 Arg399Gln polymorphisms associated with chronic obstructive pulmonary disease. Chin. Med. J. (Engl. ed.). 122, 960–966.

    CAS  PubMed  Google Scholar 

  25. International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). http://www.who.int/classifications/icd/en/.

  26. Kochetova O.V., Korytina G.F., Akhmadishina L.Z., Viktorova T.V. 2013. Polymorphism of DNA repair genes (XRCC1, XRCC3, XPC, XPD, XPA) in ethnic groups from Republic of Bashkortostan. Russ. J. Genet. 49, 870–876.

    Article  CAS  Google Scholar 

  27. Liu Y., Chen Z., Wei Q., Yuan F., Zhi Y., Song B., Yang J. 2012. Poly (AT) polymorphism in the XPC gene and smoking enhance the risk of prostate cancer in a low-risk Chinese population. Cancer Genet. 205, 205–211.

    Article  CAS  PubMed  Google Scholar 

  28. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. 2007. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Solé X., Guinó E., Valls J., Iniesta R., Moreno V. 2006. SNPStats: A web tool for the analysis of association studies. Bioinformatics. 22, 1928–1929.

    Article  PubMed  Google Scholar 

  30. Statistica v. 6.0 program (StatSoft Inc., USA). http://www.statistica.com.

  31. Sim S.C., Kacevska M., Ingelman-Sundberg M. 2013. Pharmacogenomics of drug-metabolizing enzymes: A recent update on clinical implications and endogenous effects. Pharmacogenomics J. 13, 1–11.

    Article  CAS  PubMed  Google Scholar 

  32. Wassenaar C.A., Dong Q., Wei Q., Amos C.I., Spitz M.R., Tyndale R.F. 2011. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J. Natl. Cancer Inst. 103, 1342–1346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Zhu A.Z., Renner C.C., Hatsukami D.K., Swan G.E., Lerman C., Benowitz N.L., Tyndale R.F. 2013. The ability of plasma cotinine to predict nicotine and carcinogen exposure is altered by differences in CYP2A6: The influence of genetics, race, and sex. Cancer Epidemiol. Biomarkers Prev. 4, 708–718.

    Article  Google Scholar 

  34. Reddy P., Naidoo R.N., Robins T.G., Mentz G., London S.J., Li H., Naidoo R. 2010. GSTM1, GSTP1, and NQO1 polymorphisms and susceptibility to atopy and airway hyperresponsiveness among South African schoolchildren. Lung. 188, 409–414.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Li Y.F., Tseng P.J., Lin C.C., Hung C.L., Lin S.C., Su W.C., Huang Y.L., Sung F.C., Tai C.K. 2009. NAD(P)H: Quinone oxidoreductase 1, glutathione S-transferase M1, environmental tobacco smoke exposure, and childhood asthma. Mutat. Res. 678, 53–58.

    Article  CAS  PubMed  Google Scholar 

  36. Naccarati A., Soucek P., Stetina R., Haufroid V., Kumar R., Vodickova L., Trtkova K., Dusinska M., Hemminki K., Vodicka P. 2006. Genetic polymorphisms and possible gene-gene interactions in metabolic and DNA repair genes: Effects on DNA damage. Mutat. Res. 593, 22–31.

    Article  CAS  PubMed  Google Scholar 

  37. Neofytou E., Tzortzaki E.G., Chatziantoniou A., Siafakas N.M. 2012. DNA damage due to oxidative stress in chronic obstructive pulmonary disease (COPD). Int. J. Mol. Sci. 13, 16853–16864.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Branzei D., Foiani M. 2008. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol. 9, 297–308.

    Article  CAS  Google Scholar 

  39. Wang L.E., Gorlova O.Y., Ying J., Qiao Y., Weng S.F., Lee A.T., Gregersen P.K., Spitz M.R., Amos C.I., Wei Q. 2012. Genome-wide association study reveals novel genetic determinants of DNA repair capacity in lung cancer. Cancer Res. 73, 256–264.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Zhan P., Wang Q., Qian Q., Yu L.K. 2013. XRCC3 Thr241Met gene polymorphisms and lung cancer risk: A meta-analysis. J. Exp. Clin. Cancer Res. 32, 1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jin B., Dong Y., Zhang X., Wang H., Han B. 2014. Association of XPC polymorphisms and lung cancer risk: A meta-analysis. PLoS ONE. 9, e93937.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Guo W., Zhou R.M., Wan L.L., Wang N., Li Y., Zhang X.J., Dong X.J. 2008. Polymorphisms of the DNA repair gene xeroderma pigmentosum groups A and C and risk of esophageal squamous cell carcinoma in a population of high incidence region of North China. J. Cancer Res. Clin. Oncol. 134, 263–270.

    Article  CAS  PubMed  Google Scholar 

  43. Lou Y., Li R., Zhang Y., Zhong R., Pei J., Xiong L., Zhang X., Han B. 2014. XPA gene rs1800975 single nucleotide polymorphism and lung cancer risk: A meta-analysis. Tumour. Biol. April 3 [Epub ahead of print].

    Google Scholar 

  44. Huang D., Zhou Y. 2014. Nucleotide excision repair gene polymorphisms and prognosis of non-small cell lung cancer patients receiving platinum-based chemotherapy: A meta-analysis based on 44 studies. Biomed. Rep. 4, 452–462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Korytina.

Additional information

Original Russian Text © G.F. Korytina, L.Z. Akhmadishina, O.V. Kochetova, Yu.V. Burduk, Yu.G. Aznabaeva, Sh.Z. Zagidullin, T.V. Victorova, 2014, published in Molekulyarnaya Biologiya, 2014, Vol. 48, No. 6, pp. 939–951.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korytina, G.F., Akhmadishina, L.Z., Kochetova, O.V. et al. Association of genes involved in nicotine and tobacco smoke toxicant metabolism (CHRNA3/5, CYP2A6, and NQO1) and DNA repair (XRCC1, XRCC3, XPC, and XPA) with chronic obstructive pulmonary disease. Mol Biol 48, 823–834 (2014). https://doi.org/10.1134/S0026893314060090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893314060090

Keywords

Navigation