Skip to main content
Log in

The role of calcium in the conformational changes of the recombinant S100A8/S100A91

  • Structural and Functional Analysis of Biopolymers and Biopolymer Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korndorfer I.P., Brueckner F., Skerra A. 2007. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins. J. Mol. Biol. 370 (5), 887–898.

    Article  PubMed  Google Scholar 

  2. Maki M., Kitaura Y., Satoh H., Ohkouchi S., Shibata H. 2002. Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim. Biophys. Acta. 600 (1–2), 51–60.

    Article  Google Scholar 

  3. Schafer B.W., Heizmann C.W. 1996. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21 (4), 134–140.

    Article  CAS  PubMed  Google Scholar 

  4. Donato R., Cannon B.R., Sorci G., Riuzzi F., Hsu K., Weber D.J., Geczy C.L. 2013. Functions of S100 proteins. Curr. Mol. Med. J. 13 (1), 24–57.

    Article  CAS  Google Scholar 

  5. Donato R. 2001. S100: A multigenic family of calciummodulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 33 (7), 637–668.

    Article  CAS  PubMed  Google Scholar 

  6. Leukert N., Vogl T., Strupat K., Reichelt R., Sorg C., Roth J. 2006. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J. Mol. Biol. 359 (4), 961–972.

    Article  CAS  PubMed  Google Scholar 

  7. Striz I., Trebichavsky I. 2004. Calprotectin: A pleiotropic molecule in acute and chronic inflammation. Physiol.Res. 53 (3), 245–253.

    CAS  PubMed  Google Scholar 

  8. Nacken W., Sorg C., Kerkhoff C. 2004. The myeloid expressed EF-hand proteins display a diverse pattern of lipid raft association. FEBS Lett. 572 (1–3), 289–293.

    Article  CAS  PubMed  Google Scholar 

  9. Yui S., Nakatani Y., Mikami M. 2003. Calprotectin (S100A8/S100A9), an inflammatory protein complex from neutrophils with a broad apoptosis-inducing activity. Biol. Pharm. Bull. 26 (6), 753–760.

    Article  CAS  PubMed  Google Scholar 

  10. Champaiboon C., Sappington K.J., Guenther B.D., Ross K.F., Herzberg M.C. 2009. Calprotectin S100A9 calcium-binding loop I and II are essential for keratinocyte resistance to bacterial invasion. J. Biol. Chem. 284 (11), 7078–7090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghavami S., Kerkhoff C., Los M., Hashemi M., Sorg C., Karami-Tehrani F. 2004. Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: The role of ROS and the effect of metal ions. J. Leukoc. Biol. 76 (1), 169–175.

    Article  CAS  PubMed  Google Scholar 

  12. Yanamandra K., Alexeyev O., Zamotin V., et al. 2009. Amyloid formation by the pro-inflammatory S100A8/A9 proteins in the ageing prostate. PLoS ONE. 4 (5), e5562.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shepherd C.E., Goyette J., Utter V., Rahimi F., Yang Z., Geczy C.L., Halliday G.M. 2006. Inflammatory S100A9 and S100A12 proteins in Alzheimer’s disease. Neurobiol. Aging. 27 (11), 1554–1163.

    Article  CAS  PubMed  Google Scholar 

  14. Cross S.S., Hamdy F.C., Deloulme J.C., Rehman I. 2005. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology. 46 (3), 256–269.

    Article  CAS  PubMed  Google Scholar 

  15. Gebhardt C., Nemeth J., Angel P., Hess J. 2006. S100A8 and S100A9 in inflammation and cancer. Biochem. Pharmacol. 72 (11), 1622–1631.

    Article  CAS  PubMed  Google Scholar 

  16. Streicher W.W., Lopez M.M., Makhatadze G.I. 2010. Modulation of quaternary structure of S100 proteins by calcium ions. Biophys. Chem. 151 (3), 181–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yap K.L., Ames J.B., Swindells M.B., Ikura M. 1999. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins. 37 (3), 499–507.

    Article  CAS  PubMed  Google Scholar 

  18. Chazin W.J. 2011. Relating form and function of EFhand calcium binding proteins. Acc. Chem. Res. 44 (3), 171–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grabarek Z. 2006. Structural basis for diversity of the EF-hand calcium-binding proteins. J. Mol. Biol. 359 (3), 509–525.

    Article  CAS  PubMed  Google Scholar 

  20. Crestfield A.M., Moore S., Stein W.H. 1963. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J. Biol. Chem. 238, 622–627.

    CAS  PubMed  Google Scholar 

  21. Ranjbar B., Gill P. 2009. Circular dichroism techniques: Biomolecular and nanostructural analyses. A review. Chem. Biol. Drug Design. 74 (2), 101–120.

    Article  CAS  Google Scholar 

  22. Greenfield N.J. 2006. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1 (6), 2876–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tetin S.Y., Prendergast F.G., Venyaminov S.Y. 2003. Accuracy of protein secondary structure determination from circular dichroism spectra based on immunoglobulin examples. Anal. Biochem. 321 (2), 183–187.

    Article  CAS  PubMed  Google Scholar 

  24. Azimi O., Emami Z., Salari H., Chamani J. 2011. Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: fluorescence spectroscopy and circular dichroism investigations. Molecules. 16 (12), 9792–9818.

    Article  CAS  PubMed  Google Scholar 

  25. Heizmann C.W., Hunziker W. 1991. Intracellular calcium- binding proteins: more sites than insights. Trends Biochem. Sci. 16 (3), 98–103.

    Article  CAS  PubMed  Google Scholar 

  26. Yousefi R., Imani M., Ardestani S.K., Saboury A.A., Gheibi N., Ranjbar B. 2007. Human calprotectin: Effect of calcium and zinc on its secondary and tertiary structures, and role of pH in its thermal stability. Acta Biochim. Biophys. Sinica. 39 (10), 795–802.

    Article  CAS  Google Scholar 

  27. HardingS.E., Chowdhry B.Z. 2000. Protein–Ligand Interactions: Hydrodynamics and Calorimetry, A Practical Approach, New York: Oxford Univ. Press.

    Google Scholar 

  28. Kerkhoff C., Klempt M., Sorg C. 1998. Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim. Biophys. Acta. 1448 (2), 200–211.

    Article  CAS  PubMed  Google Scholar 

  29. Pace C.N. 1990. Measuring and increasing protein stability. Trends Biotechnol. 8 (4), 93–98.

    Article  CAS  PubMed  Google Scholar 

  30. Pace C.N., Trevino S., Prabhakaran E., Scholtz J.M. 2004. Protein structure, stability and solubility in water and other solvents. Phil. Trans R Soc. London B. 359 (1448), 1225–1234.

    Article  CAS  Google Scholar 

  31. Pace C.N. 1990. Protein Structure: A Practical Approach, Oxford: IRL Press.

    Google Scholar 

  32. Saboury A.A., Karbassi F. 2000. Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochim. Acta. 362 (1–2), 121–129.

    Article  CAS  Google Scholar 

  33. Nacken W., Kerkhoff C. 2007. The hetero-oligomeric complex of the S100A8/S100A9 protein is extremely protease resistant. FEBS Lett. 581 (26), 5127–5130.

    Article  CAS  PubMed  Google Scholar 

  34. Heizmann C.W., Fritz G., Schafer B.W. 2002. S100 proteins: Structure, functions and pathology. Front Biosci. 7, d1356–d1368.

    Article  CAS  PubMed  Google Scholar 

  35. Pan K.M., Baldwin M., Nguyen J., Gaßset M., Serban A., Groth D., et al. 1993. Conversion of a-helices into ß-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U. S. A. 90 (23), 10962–10966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoyaux D., Decaestecker C., Heizmann C.W., et al. 2000. S100 proteins in Corpora amylacea from normal human brain. Brain Res. 867 (1–2), 280–288.

    Article  CAS  PubMed  Google Scholar 

  37. Vogl T., Gharibyan A.L., Morozova-Roche L.A. 2012. Pro-inflammatory S100A8 and S100A9 proteins: selfassembly into multifunctional native and amyloid complexes. Int. J. Mol. Sci. 13 (3), 2893–2917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Chegini.

Additional information

Published in Russian in Molekulyarnaya Biologiya, 2016, Vol. 50, No. 1, pp. 136–142.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheibi, N., Asghari, H., Chegini, K.G. et al. The role of calcium in the conformational changes of the recombinant S100A8/S100A91. Mol Biol 50, 118–123 (2016). https://doi.org/10.1134/S0026893315060084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893315060084

Keywords

Navigation